DOI QR코드

DOI QR Code

Hydraulic Design of Natural Gas Transmission Pipeline in the Artic Area

극한지 장거리 천연가스 배관의 유동 설계

  • 김영표 (한국가스공사 가스기술연구원) ;
  • 김호연 (한국가스공사 가스기술연구원) ;
  • 김우식 (한국가스공사 가스기술연구원)
  • Received : 2015.12.08
  • Accepted : 2016.04.26
  • Published : 2016.04.30

Abstract

Hydraulic analysis of the natural gas transmission pipeline is to determine whether adequate flow can be sustained throughout the design life of pipeline under all expected flow conditions. Many factors have to be considered in the hydraulic design of long-distance pipelines, including the nature, volume, temperature and pressure of fluid to be transported, the length and elevation of pipeline and the environment of terrain traversed. This study reviewed the available gas operation data provided by pipeline construction project in the arctic area and discussed the gas properties such as viscosity and compressibility factor that influence gas flow through a pipeline. Pipeline inside diameter was calculated using several flow equations and pipeline wall thickness was calculated from Barlow's equation applying a safety factor and including the yield strength of the pipe material. The AGA flow equation was used to calculate the pressure drop due to friction, gas temperature and pipeline elevation along the pipeline. The hydraulic design in this study was compared with the report of Alaska Pipeline Project.

천연가스 배관의 유동설계는 예상되는 모든 유체의 조건에서 배관의 설계수명 동안 적절한 흐름이 지속될 수 있는가를 결정하는 것이다. 장거리 자원이송망의 유동설계는 수송되는 유체의 물리적 특성, 유량, 온도와 압력, 배관의 길이와 고도, 배관이 횡단하는 지역의 환경 등 다양한 인자를 고려하여야 한다. 본 연구에서는 극한지 자원이송망 건설프로젝트의 운전 자료를 분석하였으며, 배관 내 가스흐름에 영향을 끼치는 가스의 물리적 특성 중 동점성률과 압축계수를 살펴보았다. 배관내경은 몇몇 유동방정식을 사용하여 계산하였으며, 배관두께는 안전계수와 배관재료를 고려하여 계산하였다. 배관 내 마찰과 가스온도 및 배관고도로 인한 압력강하는 AGA 유동방정식을 사용하여 계산하였다. 본 연구에서 수행한 유동설계 결과는 알래스카 배관 프로젝트 보고서와 비교하였다.

Keywords

References

  1. Ramesh, S., Arctic Pipeline Planning, Elsevier, (2013)
  2. Joe, Z., Gordon, C., Beez, H. and James D. H., "An Integrated Engineering Model for Prediction of Strain Demands in Pipelines Subject to Frost Heave", Proceedings of IPC2006, Calgary, Alberta, Canada, (2006)
  3. Nixon, J. F., Sortland, K. A. and James, D. A., "Geotechnical Aspects of Northern Gas Pipeline Design", Proceedings of the Sixth Canadian Permafrost Conference, (1992)
  4. TransCanada, Application For License, (2007)
  5. TransCanada, and ExonMobil, Alaska Pipeline Project, Draft Resource Report 1 - Rev 0, General Project Description, (2011)
  6. BLACK & VEACH, Alaska Pipeline Project: Gas Off-take Study, (2011)
  7. Joint Review Panel for the Mackenzie Gas Project, Foundation for a Sustainable Northern Future, (2009)
  8. Canada National Energy Board, Mackenzie Gas Project - Reasons for Decision, (2011)
  9. Shashi, M. E., Gas Pipeline Hydraulics, Taylor & Francis Group, (2005)
  10. Payki, M. C., and Carlos P., "Considerations About Equation for Steady State Flow in Natural Gas Pipelines", J. of the Braz. Soc. Mech. Sci. & Eng, 29(3), 262-273, (2007) https://doi.org/10.1590/S1678-58782007000300005
  11. LMNO Engineering, Research and Software, LTD, Gas Viscosity Calculator.
  12. ASME B31.8, Gas Transmission and Distribution Piping Systems, The American Society of Mechanical Engineers, (2010)
  13. Petroskills, Gas Conditioning and Processing, (2014)