• Title/Summary/Keyword: pipe tension

Search Result 65, Processing Time 0.024 seconds

Experimental Study on Strengthening Effect of Plastic Greenhouse using Tension-tie (인장타이를 이용한 비닐하우스의 보강효과에 관한 실험적 연구)

  • Jang, Yu-Jin;Lee, Swoo-Heon;Chae, Seoung-Hun;Shin, Kyung-Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.2
    • /
    • pp.151-160
    • /
    • 2010
  • The number of cases of collapsed plastic greenhouses in farmlands has increased due to the heavy local snowfall caused by extraordinary atmospheric phenomena. Consequently, the economic losses of farmers have also increased. However the government policy in relation to damage pretension is insufficient and collapse case is repeated every year. The main reason for frame collapse is that the moment capacity of a steel pipe is not sufficient to resist a heavy snowload. In this study, experiments were conducted on the current frame system of a greenhouse with a tension tie. The frame consisted of two sections(${\phi}25.4{\times}1.5$, ${\phi}31.8{\times}1.5$), and its span length was 6.5 m. A temporary tension tie using a steel wire and a fabric rope was connected to the two joints, to which a curved beam and a straight column were connected. The pretension force was applied at the tension tie, and a vertical force simulating snowfall was applied until failure. The fabric rope frame increased the load-carrying capacity by 10-45% compared to the normal frame without a tension tie, and the steel wire frame increased the load-carrying capacity by 58-73% compared to the normal frame without a tension tie. Steel wire was found to be more effective as far as strength is concerned, but its connection details and pretension application are more difficult and complicated than those of the fabric rope. The test results thus show that the fabric rope is more preferable.

Development of Modular Scaffold for Overhead Transmission Line Wiring Work (송전선로 가선공사용 모듈형 발받침 개발)

  • Min, Byeong-Wook;Baik, Seung-Do;Kang, Dae-Eon;Bang, Hang-Kwon;Choi, Jin-Sung;Baek, Soo-Gon
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.450-451
    • /
    • 2006
  • The method of conductor wiring is that a messenger wire is installed, the end of the wire is connected to the conductor and a engine puller pulls the conductor. The length of one section of wiring is $3{\sim}5km$ and one group messenger wire pulls simultaneously $2{\sim}4$ group conductor, while a tensioner maintains wiring tension to prevent the deflection of the conductor. However, there are many obstacles such as roads, power lines, communication lines, buildings, farms and crops. Therefore to prevent damage from conductor deflection a staging is used. The currently used staging is scaffolding lumber which is difficult to secure and it's construction efficiency is very low because it requires a lot of time and manpower. So this study developed a insulating defense tube and pipe connecting device, and a truss structure fabrication module using steel pipe which reduces construction time and cost through a compressive and dielectric strength test.

  • PDF

Free Vibration of Marine Riser System with the Inclusion of Internal Flow (내부 유체흐름을 포함한 Riser System의 자유진동)

  • Namseeg Hong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.4
    • /
    • pp.287-296
    • /
    • 1996
  • A mathematical model for the dynamic analysis of the riser system is developed to investigate the effect of internal flow on the free vibration of marine riser system which includes a steady flow inside the pipe. A semi-analytical method using series expansion is employed to derive Eigenvalue problem to facilitate the evaluation of the system frequencies, and its validity is given through the comparison of the solutions with the conventional method using system matrices. The algorithm is implemented to develop computer programs for the estimation of the system frequency. The investigations of the effect of internal flow on system frequency are performed according to the change of parameters such as top tension, internal flow velocity, and so on. It is found that the effect of internal flow can be controlled by the increase of top tension. However, careful consideration has to be given in the design point, particularly for the long riser.

  • PDF

Verification Studies for Field Peformance of Micropiling (성능검증을 위한 마이크로파일 현장 시험시공 및 재하시험)

  • Goo, Jeong-Min;Lee, Ki-Hwan;Cho, Young-Jun;Choi, Chang-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.368-375
    • /
    • 2009
  • This paper describes field installation and load test results performed for three types of micropiles in the process of developing a new micropiling method. Field tests were performed for two conventional types(i.e., micropile reinforced with steel bar and gravity grouting, micropile reinforced with steel bar and steel casing and gravity grouting) and a proposed type(i.e., micropile reinforced with hollow steel pipe wrapped with geotextile-pack and pressurized grouting). The load test results subjected to axial compression and tension and lateral loading conditions are described in this paper. The micropiles were exposed in the air in order to verify the installation quality and curing condition of grouting material via ground excavation. Axial compression and tension test results indicate that the new micropile type provide at least 40% higher bearing capacity than that of conventional types. Based on the examination of exposed piles, it is induced that the proposed method, packed micropile, provides better interlocking between grouts and surrounding soils and increases higher frictional resistance comparing to conventional types.

  • PDF

Crack-tip Stress Field of Fully Circumferential Surface Cracked Pipe Under Combined Tension and Thermal Loads (원주방향 부분 관통 균열이 존재하는 직관에 인장하중과 열하중의 복합하중이 가해지는 경우의 균열 선단 응력장)

  • Je, Jin Ho;Kim, Dong Jun;Kim, Yun Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1207-1214
    • /
    • 2014
  • Under excessive plasticity, the fracture toughness of a material depends on its size and geometry. Under fully yielded conditions, the stresses in a material near its crack tip are not unique but rather depend on the geometry. Therefore, the single-parameter J-approach is limited to a high-constraint crack geometry. The JQ theory has been proposed for establishing the crack geometry constraints. This approach assumes that the crack-tip fields have two degrees of freedom. In this study, the crack-tip stress field of a fully circumferential surface-cracked pipe under combined loads is investigated on the basis of the JQ theory by using finite element analysis. The combined loads are a tensile axial force and the thermal gradient in the radial direction. Q-stresses of the crack geometry and its loading state are used to determine the constraint effects. The constraint effects of secondary loading are found to be greater than those of primary loading. Therefore, thermal shock is believed to be the most severe loading condition of constraint effects.

Experimental Evaluation of Reserve Capacities for Connection Details between Steel Pipe Pile and Concrete Footing of Type-B (Type-B방식의 강관말뚝과 확대기초 연결부 상세에 따른 보유내력의 실험적 평가)

  • Han, Sang-Hoon;Hong, Ki-Nam;Kwon, Yong-Kil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.183-192
    • /
    • 2008
  • Generally, application of steel pipe pile as deep foundation member needs special requirement for the connection method between steel pipe pile and concrete footing. Even though two types of connection method are suggested in the korea highway bridge code, type-B method is prevalent. In this study, vertical, lateral, and tension loading test are done for two types of type B connection to review stress concentration, formation and behavior of imaginary RC column in the footing. Welding type and hook type as the connection method are considered in this study. Test results show that welding type have the more reserve capacity than hook type and the specimens connected by the welding type behave as the imaginary RC column in the footing. However, the specimens connected by the hook type did not behave as the imaginary RC column in the footing but behave as the hinge.

Surface Modification of Screen-Mesh Wicks to Improve Capillary Performance for Heat Pipes (히트파이프 모세관 성능 개선을 위한 스크린-메쉬 윅의 표면 개질)

  • Jeong, Jiyun;Lim, Hyewon;Kim, Hyewon;Lee, Sangmin;Kim, Hyungmo
    • Tribology and Lubricants
    • /
    • v.38 no.5
    • /
    • pp.185-190
    • /
    • 2022
  • Among the operating limits of a heat pipe, the capillary limit is significantly affected by the characteristics of the wick, which is determined by the capillary performance. The major parameters for determining capillary performance are the maximum capillary pressure and the spreading characteristics that can be expected through the wick. A well-designed wick structure improves capillary performance and helps improve the stability of the heat pipe by enhancing the capillary limit. The capillary performance can be improved by forming a porous microstructure on the surface of the wick structure through surface modification techniques. In this study, a microstructure is formed on the surface of the wick by using a surface modification method (i.e., an electrochemical etching process). In the experiment, specimens are prepared using stainless-steel screen mesh wicks with various fabrication conditions. In addition, the spreading and capillary rise performances are observed with low-surface-tension fluid to quantify the capillary performance. In the experiments, the capillary performance, such as spreading characteristics, maximum capillary pressure, and capillary rise rate, improves in the specimens with microstructures formed through surface modification compared with the specimens without microstructures on the surface. The improved capillary performance can have a positive effect on the capillary limit of the heat pipe. It is believed that the surface microstructures can enhance the operational stability of heat pipes.

Flow Characteristics in the Converging Mini-Channels (좁아지는 유로에서의 유동 특성)

  • Karng, Sarng-Woo;Kim, Jin-Ho;Lee, Yoon-Pyo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1623-1628
    • /
    • 2004
  • Recently mini-channels or micro-channels are widely used for cooling the high density power electronic devices. Especially, the channels are used in small and high efficient equipments such as heat pipes and heat exchangers. Interfacial velocities between liquid and gas phases are very important in mini or micro-channels. In this paper, an experiment and a numerical analysis on the interfacial velocities were performed. In the experiment, the interfacial velocities which were measured by the high-speed CCD camera were about $26{\sim}33$ cm/s and the velocities increased as the inclination angle did. In the numerical experiment, CFD-ACE+, a commercial program, was used, the velocities had similar values with experimental results. As the inclination angle and the contact angle increased, the interfacial velocities did because of the surface tension which causes to move the interface. The effect of inclination angle was larger in the converging channels than in straight channels.

  • PDF

Development of High-Performance Lining Material for Fume Pipe (고성능 흄관 라이닝 재료 개발)

  • Lee, Youn-Su;Joo, Myung-Ki
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.391-394
    • /
    • 2003
  • Effects of the polymer-binder ratio and slag content on the properties of combined wet/dry-cured polymer-modified mortars using granulated blast-furnace slag are examined. Results shows that the flexural, compressive, tensile and adhesion in tension strengths of polymer-modified mortar using the slag tend to increase with increasing slag content, and is inclined to increase with increasing polymer-binder ratio. In particular, the polymer-modified mortars with slag content of 40% provide about 20% higher tensile strength than unmodified mortars. Such high strength development is attributed to the high tensile strength of polymer and the improved bond between cement hydrates and aggregates because of the addition of polymer.

  • PDF

New Engineering Estimation Method of J-Integral and COD for Circumferential Through-Wall Cracked Pipes (원주방향 관통균열이 존재하는 배관의 J-적분 및 COD 계산을 위한 새로운 공학적 계산식)

  • Kim, Yun-Jae;Heo, Nam-Su;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.548-553
    • /
    • 2001
  • A new method to estimate the elastic-plastic J-integral and the crack tip opening displacement (COD) for circumferential through-wall cracked pipes under tension and under bending is proposed for Leak-Before-Break (LBB) analysis. Being based on the reference stress method with further modifications, the proposed method is simple to use and easy to be generalised in practice. Comparison of the CODs, predicted using the proposed method with published pipe test data show overall excellent agreement.