DOI QR코드

DOI QR Code

Crack-tip Stress Field of Fully Circumferential Surface Cracked Pipe Under Combined Tension and Thermal Loads

원주방향 부분 관통 균열이 존재하는 직관에 인장하중과 열하중의 복합하중이 가해지는 경우의 균열 선단 응력장

  • Received : 2014.02.21
  • Accepted : 2014.08.14
  • Published : 2014.11.01

Abstract

Under excessive plasticity, the fracture toughness of a material depends on its size and geometry. Under fully yielded conditions, the stresses in a material near its crack tip are not unique but rather depend on the geometry. Therefore, the single-parameter J-approach is limited to a high-constraint crack geometry. The JQ theory has been proposed for establishing the crack geometry constraints. This approach assumes that the crack-tip fields have two degrees of freedom. In this study, the crack-tip stress field of a fully circumferential surface-cracked pipe under combined loads is investigated on the basis of the JQ theory by using finite element analysis. The combined loads are a tensile axial force and the thermal gradient in the radial direction. Q-stresses of the crack geometry and its loading state are used to determine the constraint effects. The constraint effects of secondary loading are found to be greater than those of primary loading. Therefore, thermal shock is believed to be the most severe loading condition of constraint effects.

균열이 존재하는 구조물의 균열 선단에서 과도한 소성 상태에 도달하게 되면 파괴역학 매개변수에 의하여 예측되는 균열 선단의 응력장이 실제와는 매우 다르게 나타난다. 구조물의 크기와 형상 그리고 하중의 형태에 따라 균열 선단의 응력장이 유일하지 않다. 이는 균열 선단의 구속 효과가 단일 매개변수 파괴역학으로 표현 될 수 없기 때문이다. 따라서 전통적으로 사용되었던 K, J를 이용한 단일 매개변수 파괴역학을 보완하기 위하여 다양한 시도가 있었고, 대표적으로 Q-응력이 있다. 본 논문에서는 Q-응력을 이용하여 원주방향으로 완전히 발달한 표면 균열이 있을 경우의 균열 선단의 구속 효과를 확인하였다. 고려된 하중은 일차하중으로 축 방향 인장하중과 반경방향 열구배에 의한 이차하중의 복합하중이다. 이차하중이 일차하중보다 구속효과가 더 심하며 기계하중보다 열하중이 뒤에 가해지는 열충격조건에서 구속효과가 더 심하게 나타남을 확인하였다.

Keywords

References

  1. Irwin, G. R., 1961, "Plastic Zone Near a Crack and Fracture Toughness," Sagamore Research Conference Proceeding, Vol.4, pp. 63-78.
  2. Dugdale, D. S., 1960, "Yielding in Steel Sheets Containing Slits," Journal of the Mechanics and Physics of Solids, Vol. 8, pp.100-104. https://doi.org/10.1016/0022-5096(60)90013-2
  3. Barenblatt, G. I., 1962, "The Mathmatical Theory of Euilibrium Cracks in Brittle Fracture," Advance in Applied Mechanics, Vol. 7, pp. 55-129. https://doi.org/10.1016/S0065-2156(08)70121-2
  4. Wells, A. A., 1961, "Unstable Crack Propagation in Metal: cleavage and Fracture," Proceedings of the Crack Propagation Symposium, Vol. 1, p. 84.
  5. Rice, J. R., 1968, "A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks," Journal of Applied Mechanics, Vol. 53, pp. 379-386.
  6. Huchinson, J. W., 1968, "singular Behavior at End of a Tensile Crack Tip in a Hardening Material," Journal of the Mechanics and Physics of Solids, Vol. 16, pp. 13-31. https://doi.org/10.1016/0022-5096(68)90014-8
  7. Rice, J. R. and Rosengren, G. F., 1968, "Plane Strain Deformation near a Crack Tip in a Power-Law Hardening Material," Journal of the mechanics and Physics of Solids, Vol. 16, pp. 1-12. https://doi.org/10.1016/0022-5096(68)90013-6
  8. McClintock, F. A., 1971, "Plasticity Aspects of Fracture," Fracture: An Advanced Treatise, Vol. 3, pp. 47-225.
  9. Williams, M. L., 1957, "On the Stress Distribution at the Base of a Stationary Crack," Journal of Applied Mechanics, Vol. 24, pp. 109-114.
  10. O'Dowd, N. P. and Shih, C. F., 1991, "Family of Crack-Tip Fields Characterized by a Triaxiality Parameter-I. Structure of Fields," Journal of the Mechanics and Physics of Solids, Vol. 39, pp. 898-1015.
  11. O'Dowd, N. P. and Shih, C. F., 1992, "Family of Crack-Tip Fields Characterized by a Triaxiality Parameter-II. Fracture Applications," Journal of the Mechanics and Physics of Solids, Vol. 40, pp.939-963. https://doi.org/10.1016/0022-5096(92)90057-9
  12. ABAQUS Version 6.13. User's Manual, 2013, Dassault Systems Simulia Corporation, USA.
  13. Kim, Y. J., Kim, J. S., Cho, S. M., Kim, Y. J., 2004, "3-D Constraint Effects on J Testing and Crack Tip Constraint in M(T), SE(B), SE(T) and C(T) Specimens: Numerical Study," Journal of Engineering Fracture Mechanics, Vol. 71, pp. 1203-1218. https://doi.org/10.1016/S0013-7944(03)00211-X