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Free Vibration of Marine Riser System with the Inclusion of Internal Flow
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Abstract[_]A mathematical model for the dynamic analysis of the riser system is developed to investigate the
effect of internal flow on the free vibration of marine riser system which includes a steady flow inside the pipe.
A semi-analytical method using series expansion is employed to derive Eigenvalue problem to facilitate the
evaluation of the system frequencies, and its validity is given through the comparison of the solutions with the
conventional method using system matrices. The algorithm is implemented to develop computer programs for
the estimation of the system frequency. The investigations of the effect of internal flow on system frequency
are performed according to the change of parameters such as top tension, internal flow velocity, and so on. It
is found that the effect of internal flow can be controlled by the increase of top tension. However, careful

consideration has to be given in the design point, particularly for the long riser.
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1. INTRODUCTION

The marine riser is a conductor pipe used in floating
drilling operations to convey drilling fluid and to guide
tools between the drilling vessel and the well head at
the ocean floor. Fig. 1 represents a schematic sketch of
a marine riser conductor that contains internal fluid
flow and is subject to environmental forces. When the
internal fluid travels inside the curved path along the
deflected riser, it experiences centrifugal and coriolis
accelerations due, respectively, to the curvature of the
riser and the relative motion of fluid to time dependent
riser motion. Those accelerations exert against the riser

which, in turn, affect the dynamic behaviour of the
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riser and cause riser vibrations.

The primary objectives of this study are: 1) to
develop a mathematical model for the analysis of the
riser system with the inclusion of internal flow, and 2)
to examine the effect of the internal flow on the system
frequency of riser. In this study, a semi-analytical solu-
tion using series expansion is presented for obtaining
system frequencies and a conventional numerical meth-
od using system matrices is employed to check the
results with those from semi-analytical method.

Although several studies have investigated the vibr-
ation of a pipeline conveying fluid supported abgve
ground (Ashley and Haviland, 1950), there are only a

few papers dealing with the effect of internal flow on
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Fig. 1. Configuration of riser system with the inclusion of
internal flow.

sea bottom

marine riser dynamics. Moe and Chucheepsakul (1988)
was the first who considered the forces due to the
internal flowing fluid as a dynamically forcing com-
ponent acting on the interior wall of the riser and
derived the governing equation of motion. Before that,
the loading due to the internal fluid was included in the
internal tension of the riser as a fluid static force, that
is, centrifugal and coriolis acceleration due to the
internal flow were neglected. Wu and Lou (1991) de-
veloped a mathematical model for the lateral bending
vibration of a marine riser and examined the effect of
internal flow and bending rigidity of the pipe on the
dynamic behavior of the riser. It was found from their
results that the internal flow reduced the effect of top
tension, but the riser motion was not significantly
affected when the top tension of the riser was relatively
high. Chen (1992) derived the governing equation with
the inclusion of dynamic force for lateral vibration by
applying Hamilton's principle. The natural frequencies
and the mode shapes were formulated and presented.
The critical buckling and significant velocities which
associate the internal flowing fluid with system inte-
grity were also presented. The system frequencies and
mode shapes of a marine riser with the internal flow
are evaluated in this study. First, semi-analytical solu-
tions are obtained using series expansion to the
mathematical model and second, numerical solutions

are calculated adapting complex eigenvalue method to

the matrix equilibrium equation. Finally, the algorithm
for the computer program is introduced and the
verification of the first method is inspected through the
comparison of the system frequencies with the second
method. Further, the comparison of semi analytical

solutions with results from referenced papers is given.

2. GOVERNING EQUATION OF MOTION

2.1 Force Due to Internal Flow

The force acting on the internal wall of the riser is
derived in two ways: by obtaining the acceleration of a
fluid particle, and by using the concept of Hamilton's
principle.

In all two way, no small-scale motions such as tur-
bulence or secondary flow are assumed to be absent.
And also, the plug-flow model with no radial variation
of velocity is utilized as a fluid model for the internal
flow.

First, we obtain the acceleration of a fluid particle by

differentiating the fluid velocity V,,

dVy 0Vids 9V,
= = e— —_— 1
" dr T os, dt o @)
where
ox; A Oxy A Ox A .
v,=a—t’z+a—t2,+a—;l?+vlt:r+v1{ @

Performing the operations in (1) with s,~s and ds/dt=
V,, we obtain the fluid acceleration in the deformed direc-

tion
A=+ V,rY Vi+V;
=T+ V0 +2ViI' + V V1 + V21” 3)
Assuming steady flow and no convective acceleration

along the riser curve, the fluid force acting on the

internal wall of riser becomes
Fl=—mfAI=—mf(r'+2V11'"+V12r") “@

where m; is mass of drilling mud and sea water.
Second, we apply the concept of Hamilton's principle

just considering the finite part comprising the pipe and
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the enclosed volume of fluid. Hamilton's principle in

our problem states that
8 (T +T; =V, = V;)de =0 Q)

where, T, and V, are the kinetic and potential energies
associated with the tube, and 7; and V; are the corre-
sponding quantities for the fluid. Using the velocity of
the internal fluid obtained from neglecting the stretching
strain in (2), we have kinetic energy of the enclosed

volume of fluid

2 2

ox ox ox dx

L ol BV B WY a | R IRl
Ti=" VI+(8t +V'as,]+[a: +V'asl]

2

2 2
+] 22 5v, 2201 | as, (6)
ot s,

and the potential energy of the fluid is zero because the

fluid is assumed to be incompressible, i.e.,

V=0 @)
Performing the variation after the substitution of (6)
and (7) into (5), we obtain the following integration

JJrJJI (g {Ce1+ V') (@ + Vi)

+(+ VX)) (8, +V, 8 )
+ (X, + V' + 1) (8, + V8’ )} + O, — 8V, ]ds, dt =0
®

. . _d d .
= — (&), &; = — (&, =1,2,3
Since &, 5 (&), & axi( SI( )
Each term may be integrated by parts so as to eli-

minate the various derivatives of 8x, When this is done,

there is obtained

3
JJ“JJ[‘ [Z(mfjc'i +2m; V', +m;Vx”;)
=
&, + 8T, — 8V, ] ds dt =0 ©)

where all the integrated terms have disappeared be-
cause of the boundary conditions. From the concept of
the resulting Euler-Lagrange equations, we can recognize

that the expression in round bracket represents the
forcing components of a fluid particle inside the pipe due
to internal flow. Thus, the fluid force acting on the
internal wall of the pipe can be written in vector form.

Fi=—m.(f+2V;1' + VIr") (10)

We can easily see that (4) and (10) are identical. The
first term on the right represents the inertia force
associated with the riser acceleration, the second term
is the inertia force associated with the coriolis acce-
leration which arise because the fluid is flowing with
velocity Vj relative to the riser, while the riser itself has
an angular velocity at any point along its length, and
the last term represents the inertia force associated with
the change in direction of the flow velocity, ow-

ing to the curvature of the riser.

2.2 Linear Governing Equation of Motion
Restricting attention to risers whose deformation lies
wholly in a single plane, the governing equation of

motion ( Hong, 1994 ) can be derived as

mixy+2m V' + mgVix"” +(EL” ) - (Tx")) = q
1)

mxy—Te=qs (12

where m, is the total mass including riser itself.

Most riser problems in intermediate water depth, long-
itudinal vibration is unimportant and we may neglect the
longitudinal inertia term in (12). Further, it is convenient
to include the hydrostatic effects of internal and external
fluid pressures by defining effective weight per unit
length, w and effective tension, T, as

W =W+ KA — %oAo (13)
Te=T = pA;=poAo (14

where w,=riser weight per unit length, v, v,=specific
weight of internal and external fluid, p,, p,=internal and
external static pressure of riser, and A, A,=internal and
external area of riser.

Noting that q,=-w, (12) can then be integrated to

give
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Te=TIR - [, w ds (15)
or

T.=TIB + [, wds (16)

where TTR and TTB are, respectively, the top tension
and the bottom reaction tension.

Thus, the effective tension is independent of the
horizontal deflections an‘d then, with no torsion, (11)

becomes

ek + 2m VR’ +m VX" + B )
—wx' - Tex”;=q, an
meX o+ 2m;Vpe'y +m;Vix”, + (Ex )"
—wx’,—Tex”,=q, (18)

Equations (17) and (18) represent the linear model.

3. SOLUTION OF THE FREE VIBRATION
OF THE SYSTEM

3.1 Semi-Analytical Solution

The linear governing equation for lateral vibration of
a marine riser system with the internal flow and linear
tension has been derived in section 2.2. The free
vibration equation of the system can be derived simply
by setting the forcing term in the right hand side of (17)
to zero and dropping the subscript 1 of variable x indica-
ting the lateral deformation. The resulting equation
represents the free vibration of the system in the lateral

direction
mx +2m V' +m Vix” +(Ek”Y —wx’—Tex” =0
19

where the unknown variable x represents the displa-
cement in lateral direction and prime denotes the deriva-
tive with respect to a vertical coordinate, z.

Providing that pipe has an uniform section of cons-
tant EI and selecting T, as the mean value of the
tension force acting along the length of riser, (19)

becomes

mx + ZmIVrfc’+me12x”+ Elx””" —wx’-Tx”=0
(29

where Te represents mean tension and is given as TTB+
wL/2 or TTR-wL/2.

3.1.1 Quasi mode shape

Equation (20) differs from the usual vibration
equations in that it contains a mixed derivative term
with respect to time and space which is the coriolis
force, the force required to rotate fluid elements with
local pipe rotation. Its mixed derivative causes an
asymmetric distortion of classical mode shapes and
could lead to a flutterlike instability. Thus, Eq. (20)
does not possess the classical normal modes. Its solu-
tion can not be separated simply into time and space

components. For example, if a trial solution of the form
x(z,t)=x()sinax 2D

is substituted into (20), it can be seen that the coriolis
force term varies as cos t, while the remainder of the
terms have a sin ¢ term. This suggests that solution sho-

uld be written as
x(z,t)=a,x(z)sin & +a,x(z)cos ¢ (22)

The boundary conditions for a pinned-pinned span are

given by

x(0,8)=x(L, t)=0%(0,)/0z2 =0’ (L, t)/0z2=0
(23)

and those boundary conditions are satisfied by the set

of sinusoidal mode shapes,
X@)=sinnm/L, n=1,2,3-- 24

These mode shapes make the first, third, fourth, and
sixth terms in (20) unaltered, but the mixed derivative
in the coriolis force term generates spatially asymmetric
terms for a symmetric mode shape (n=1, 3, 5,...) and
spatially symmetric terms for an asymmetric mode
shape (n=2, 4, 6,..) These considerations imply that
the solution of (20) with pinned end conditions should
be the sum of symmetric and asymmetric spatial modes
with sine and cosine components (Housner, 1952;
Blevins, 1990).

x;(z,1)=
n=1,3,5"

an sin(n 7z /L) sin @;t
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+ Y agsin(rm/L)coswit j=1,2,3,. (25)
n=3,4,6,"
where w; is the natural frequency of the j-th vibration
mode and the coefficient equation will be derived in
next section.

Eq. (25) shows that the classical mode shape does
not exist in our system as stated early. Moe and
Chucheepsakul (1988) has shown that there is a phase
shift due to the internally flowing fluid. Chen (1992)
has made a heuristic assumption that the time com-
ponents have been dropped out of (25) at the end of
his derivation and showed through his numerical exam-
ple that the error due to the assumption was negligible
as compared to other author's results from different
approaches. According to his assumption, the 1st quasi
mode shape can be formed by dropping the time
components from (25) and given by

xy(z)= z

n=1,35"
+ Y assin(rm/L) (26)

n=2,4,6"

ay sin(nmz /L)

where the coefficients were determined from the equa-
tion to the 1st natural frequency .

In this paper, the quasi mode shape, which is not
from Chen's assumption but by including time depen-
dent component in (25), is implemented for the deter-
mination of system frequency.

3.1.2 Modified eigenvalue problem

In order to obtain the coefficient equations, let's begin
with the substitution of trial solution (25) into (20). By
this substitution, the coriolis force and the fifth term in
(20) produce terms containing cos(nmz/L). These cosine
terms can be expanded in a Fourier half-range series of

sine functions

cos(nm/L)= bypsin(pmz/L), n=1,2,3,
p=1,2.3"
@7
where
0 n+p =even
bnp = 4p/{(p?>—n?} n+p =odd 28)

This Fourier series converges relatively slowly over the
span and not at all at the ends, but it does allow the
spatial dependence to be factored out of the solution.
With the substitution of the series expansion of cosine
function, the terms in (20) can be grouped according to
whether they contain sinw#, cosot. For a neutrally buo-
yant case (w=0),
an {~m @} —m Vi(n /LY +T(n n/L )
n=135,.
+El(n wL)*} sin (n 7z /L ) sin (@;¢)

+ ¥ (—Sme,a)]./L){ Y

(appn)/(n2—p?)
n=1,3,5,.. p=2,4,6...

sin (n 7z /L ) sin (w;¢)

+ Y an{-m}-m Vin UL+ T(n /L)
n=2,46,..

+El(n 7/L)*} sin (n 7z /L) cos (@;¢)

+ Y GmVoe L) { Yy

(a,pn)/(n?-p 2)}
n=2,4,6,. p=13,5,..

sin (n nz /L) cos (@;t) =0 29)

The coefficients of each group are set to zero to give

the following equations

an [El(n m/LY* = m; V¥(n /L) + Te(n /L) — m; 7]
=@m Vi, /L) Y

P=2,4,6"

n=13,5,. (30)

appn/(n>=p?)

an[El(n /LY* = m Vi(n t/L)? + T(n /L) — m; ]
=@m Vo /L) Y

p=1,3,5"

n=246,. (1)

appn/(n?—p?)

For a negatively or positively buoyant case (w=0),

Z an{—m;@} -m Vin wLy + Te(n /L)

n=135,"

El(n #/1.)*} sin (n 7z /L) sin (@, 1)

+ Y (—Smfvlw,/L){Zp=2,4,6,-"(appn)/

n=1,3,5""

(n? —pz)} sin(n 7z /L) sin (@;1)

+ ¥ —4w/L(2

n=13,5"" p=2.4,6,"

,,,,p,./(,,z_,,z)]
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sin (n 7z /L) sin (w; ¢)

+ Y, an{-me}-mViHn /L + T(n n/LY

n=24,6,""

+El(n 7/1)*} sin (n iz /L) cos (w})

+ Y (Sm,v,w]./L){ h

(@,pn )/(nZ—pZ)}

n=2,4,6," n=1,35,"
sin (n mz /L) cos (@;1)
+ Z —4wL aypn /(n>—p2)
n=2,4,6," p=1,35"
sin (n 7z /L) cos (@; 1) 32)

Collecting (32) into groups according to sinw# or
cosmt and setting the coefficient to zero, the following

set of coefficient equations can be obtained:

an[E(n /L)* — m V{(n /LY + Te(n /L) — my 7]

=@m,V,0 +4w) Y a,pn/(n?-p?) n=1,35,

Pt
(33)
ax [El(n /L)* — m V(n /LY + Te(n /L) — my, 7]
=(-8m V,0 +d4w) Y a,pn/(n>—p?) n=2,4,6,
p=tas
(34
These equations can be put in matrix form:
{[Knp] - @;[Cop] - &Pmi[IT}H{a }=0 (3%5)
where
El(n WLy + T,(n WLy ~m Vi(n WLY, n=p
(—4w/L){pnAn2-p2)}, n=odd, p=even
Kop = (~awL){pnAn~p?)}, n=even, p=odd
0, n#p,n+p=even
(36)
0, n=p
(8m V(L){pnAn-p?)}, n=odd, p=even
37

" 7\ (-8m, VL){pnAn?~p?)}, n=even, p=odd
0, n#p,n+p=even

{a}={a,,a; a,....}T, and [I] =the identity matrix
with value of one on the diagonal and all other equal
to zero.

Nontrivial solution of (35) are sought by setting the

determinant of the coe- fficient matrix to zero:
[ [K]~ao[C]-a?Pm[I]] =0 (38)

Because the system has an infinite number of natural
modes, we have to consider only the first few modes
practically. Blevins (1990) included only the first two
modes in his appropriate analysis, then a,, a,, as,... are
set equal to zero. In this paper, the more number of

natural modes will be included in practical analysis.

3.2 MDOF System with Coriolis Matrix

Since the semi-analytical method included the assump-
tion in derivation and the simplicity in a practical sense
as shown in the previous section, the error resulting from
the assumption and the simplicity should be checked.
The conventional way for determining the system frequ-
ency is to construct eigenvalue problem using the matrix
equilibrium equation of free vibration system which is
already constructed (Hong, 1994) and given by the follo-

wing equation:

M) {E (0} +[C;) { OT; — C + Ky Jx ()} =0
(39)

Rewriting (39) in a usual simple form, we get
MU +CU +KU =0 (40)

In above equation, C is not a usual damping matrix but
a coriolis matrix which is skew-symmetric. As dis-
cussed earlier, CU acts like a dynamic coupling force
not a damping force. Thus, it can not be allowed to
construct eigenvalue problem simply applying conven-
tional method because the imaginary part of eigenvalue,
which indicates a damped frequency, is always zero.
The complex value with zero imaginary should be
implemented and then, the imaginary part has to be
checked whether it is equal to zero. This is verified

through the numerical example given in section 3.3.2.

3.3 Numerical Evaluation of System Frequency

3.3.1 Algorithm for computer program

Since the eigenvalue problem in section 3.1 is not a
standard form, it may be required to implement a slightly
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different algorithm based on one for the standard form of
eigenvalue problem. As recognized in the algorithm
summarized in Fig. 2, the non-standard form of eigen-
value problem has to be resolved for every iteration step.
In this paper, the inverse iteration algorithm with shifting
value is chosen to solve the given eigensystem. The
technique of inverse iteration is very effectively used to
calculate an eigenvector, and at the same time the

corresponding eigenvalue can also be evaluated. Inverse

Let [A] =[K], [B]=-m([I]
A=o, {U}={a}

v

solve { [A] +A[B]}{U}=0

obtaln (D( ! )= XVJ
Let [Al":[K]-0"[C] '(
Let
& (61)=a;l!)
solve { [A]"+A[B]}{U}=0
obtain (D(“)=)~l/2

Check convergence
"~ o0™< Error

Obtain eigenvalue and
corresponding eigenvector

Fig. 2. Algorithm for solving non-standard eigenvalue pro-
blem.

iteration, like a usual vector iteration method, can be
employed even if some diagonal elements of mass matrix
has zero value.. Further, the shift of eigenvalue improves
the convergence rate in the vector iteration and acce-
lerates the calculation of the eigenvectors. Those techni-
ques are also introduced in this paper and the computer
program, of which algorithms are referenced from the
text of Bathe and Wilson (1976), has been developed in
this study.

3.3.2 Comparison of results

For the verification of the solutions from semi-
analytical method, the comparisons are made in two
different ways. The first is to calculate the system
frequencies of the system with the exclusion of internal
flow using semi-analytical method and then compare
those with the results from previous investigators. This
comparison provides the validity of the representation of
solution into the sum of two components as shown in
(25) but it does not supply enough evidence for the
system including the internal flow. Thus, another one in
section 3.2 is implemented to compare with the results
from the semi-analytical method. This comparison gives
enough evidence even for the system including internal
flow. The comparison with Chen's (1992) results may
be also given. However, in the expansion of cosine term
into Fourier series, he followed the misuse of Fourier
coefficients which was also found in Housner's (1952)
paper. The wrong expansion of the coriolis force term
may lead to the error in the calculation of the system

frequency with internal flow.

Table 1. The design properties and for a drilling riser system for use in the Northern North Sea.

Outside diameter

Elastic modulus

Sectional moment of inertia
Riser length

Riser mass

Bottom tension

Effective weight per unit length
Mean tension

Density of drilling mud
Density of sea water

D =60.96 cm, with 15.875 mm wall thickness
E=2.1x10° kg/cm’
1=131,018.2 cm*
L=1524m
m = 31.04 kg/m
(includes mass of drilling mud and sea water)
TTB = 1,271.350 kN
w =393.89 kg/m
T.=1,452.8 kN
P = 1363.6 kg/m’®
P, = 1039.0 kg/m’
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Table 2. Comparison of system frequencies of the 1st to 10 th modes for a drilling riser system with no internal flow.

(System frequency = o (rad/sec), V;=0 m/s).

Mode i  Semi-Analytical Method Chen Dareing Kim Spanos
1 0.81813 0.81585 0.81498 0.81484 0.831
2 1.80520 1.80430 1.80362 1.80390 1.831
3 3.08798 3.08585 3.08762 3.08328 3.123
4 473703 4.73268 4.73748 4.73328 4.778
5 6.78865 6.78123 6.78901 6.78934 6.832
6 9.26100 9.24969 9.301
7 12.1634 12.14743 12.193
8 15.5008 15.47942 15.506
9 19.2760 19.24850 19.232
10 23.4907 23.45631 23.352

Table 3. Comparison of system frequencies of the 1st to 10 th modes for a drilling riser system with no internal flow

(System frequency = wy(rad/s), V,=6 m/s).

Numerical method described in section 3.3

Mode i Semi-Analytical Method
Real value Imaginary value
1 0.81701 0.81417 0.00231
2 1.80326 1.80030 0.00194
3 3.08550 3.06014 0.00102
4 473421 4.73527 0.00032
5 6.78562 6.78776 0.00003
6 9.25782 9.26105 0.000007
7 12.1601 12.1916 0.000001
8 15.4975 15.4908 0.000000
9 19.2727 19.2735 0.000000
10 23.4889 23.4909 0.000000

The example data, which is for a typical drilling riser
system for use in the northern North sea and repeated
from Chen (1992), is given in Table 1. Using those
data, the first comparison is given in Table 2 which
presents the comparison of the natural frequencies of
the 1st to 10th modes obtained from semi-analytical
method, Dareing and Huang (1976), Spanos and Chen
(1980), Kim (1988) and Chen (1992). The discrepancy
between those methods including semi-analytical me-
thod is negligible, that is, the representation of solution
such as (25) is acceptable.

For the riser system with internal flow of 6 m/s, the
comparisons of the 1st to 10th modal frequencies calcu-
lated using both semi-analytical method and numerical
method described in section 3.2 are given in Table 3.

The system frequencies obtained using second method

are complex values which consist of real and imaginary
part. The imaginary part represents damping frequency.
As shown in Table 3, the imaginary parts have almost
zero values, that is, the mixed derivative term in gover-
ning equation or the coriolis skew-symmetric term in
matrix equilibrium equation does not have the same
effect as that of viscous damping force although it
involves the time derivatives. In other words, the
mixed derivative term or the coriolis matrix indicates
the dynamic coupling force as discussed earlier. Further,
it can be recognized from the table that the discrepancy
in the system frequencies resulting from the two
different methods is negligible. Thus, both two me-
thods developed in this chapter are acceptable for the
estimation of the system frequency regardless of the
existence of internal flowing fluid.
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Of two methods, semi-analytical method is more
convenient than the other because there is no need to
construct the coefficient matrices through the finite
element approximation. Thus, semi-analytical method
will be adapted for the investigation of the effect of

internal flow on system frquency.

4. THE EFFECT OF INTERNAL FLOW
ON SYSTEM FREQUENCY

For the deep sea application, the riser system is, in
general, designed to be nearly neutrally buoyant. Under
such condition, the effective weight, the difference
between riser weight and local net buoyancy, which
results from the combined fluid action of external and

internal hydrostatic pressure, is equal to zero, that is,

Meun Tension =0 kN

1 st Mode System Frequeney Ratio (%)
® ©
L=

800 7200 7600
Water Depth (m)
€
i
%
&
k) !
2 \ :
T2 60 800 60 1800
‘Water Depth (m)
g V «1.5misec
e b NI T e e e V =~ 3.0m/scc
% [ —— AL Y
% V = 6.0 m/scc
80
E V ~9.0miwc
3 70
b — V121
g Mcan Tension — 50 kN —— 120 m/sec
w60 00 &6 1200 7800
Water Depth (m)
Fig. 3. Internal flowing fluid effect on Ist mode system

frequency of a neutrally buoyant riser system. The
internal flow velocity changes from 1.5 m/s to 12.0
m/s and mean tension (same as top tension) does
from null to 50 kN.

the balance between riser weight and local net buoy-
ancy is locally maintained for the entire length of the
riser.

The system frequencies were computed for different
water depths with six different internal flow conditions
and three different top tensions. Fig. 3 shows the rela-
tionship between water depth and system frequency of
a neutrally buoyant riser system, i.e., w=0. The ord-
inate is the ratio of the Ist mode frequency to the
natural frequency of the system with null internal flow.
As can be seen in the figure, the system frequency is
drastically affected by the internal flow for the null
tension case. Finally, riser buckles when the flow
velocity approaches a critical velocity. The increase of
top tension, on the other hand, counters the internal
flow effect as seen on the second and third figures.
With adequate top tension, the system frequency appro-

aches constant as water depth increases. This is
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Fig. 4. Comparison between the effects of each forcing
terms (centrifugal and coriolis forces) due to inter-
nal flow on 1st system frequency. (Mean tension =
50 kN, Internal flow velocity = 12 m/s).
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because the influence of the stiffness term becomes
negligible. Fig. 4 shows the separate effects of the two
flow-induced force components centrifugal and coriolis
forces on a riser system. This is one of the cases in Fig.
3, with a mean tension of 50 kN and an internal flow
velocity of 12 m/s. From Fig. 4, it can be seen that the
main effect on system frequency is due to centrifugal
force. However, even though for the case shown the
coriolis force seems to have a minor influence on
system frequency, it remains unanswered on its effect
on system dynamics such as displacement and stress.
Also, as discussed, internal flow, as it travels along
the curved path in the riser, generates centrifugal and
coriolis force. These dynamic forces exerted against the
riser, in turn, affect the dynamic behavior of a riser.
The centrifugal force reduces the stiffness of a riser
whereas the coriolis force causes the dynamic coupling

with other forces.

5. CONCLUSIONS

From the results of sample computations, the effects
of internal flow on riser dynamics are examined. The
following conclusions are drawn:

1) There are two dynamic forces due to the motion of
internal fluid, that is, centrifugal and coriolis force. The
centrifugal force, which depends only on the curvature of
riser deflection, does not alter displacement shape wher-
eas the coriolis force, which is a term with mixed deriva-
tive of time and space, distorts the displacement shape.

2) The system frequency is significantly affected by
the internal flow for the null tension case. The riser
will buckle finally when flow velocity reaches a critical
velocity. The increase of top tension, on the other hand,
partially counters the internal flow effects. Further, the
main effect on system frequency is due to centrifugal

force.

3) It was concluded that the natural frequencies
could be reduced drastically by the fluid dynamic force
if the tension was insufficient for a neutrally buoyant
riser system, and that the dynamic force had less influ-

ence on a positively or negatively buoyant riser system.
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