• Title/Summary/Keyword: piezoelectric voltage coefficient

Search Result 56, Processing Time 0.032 seconds

The Dumb-bell Shaped Magnetostrictive/Piezoelectric Transducer

  • Li, Jianzhong;Wen, Yumei;Li, Ping
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.461-465
    • /
    • 2011
  • Traditional magnetostrictive/piezoelectric laminate composites are generally in the regular geometries such as rectangles or disks. To explore properties of the irregular geometry magnetostrictive/piezoelectric transducer in the fundamental resonant frequency, a step dumb-bell shaped Magnetoelectric (ME) transducer is presented in this study. Both analytical and experimental investigations are carried out for the dumb-bell shaped transducer in the fundamental frequency. Comparing with the traditional rectangular transducer, the theory shows the resonant frequency of dumb-bell shaped transducer is reduced 31%, and the experiment gives the result of that is 37% which is independent of dc magnetic fields. The ratio of magnetoelectric voltage coefficient (MEVC) between the dumb-bell shaped and rectangular shaped transducers in theory is 66% comparing with that of in experiment is varying from 140% to 33% when the dc field is increased from 0 Oe to 118 Oe.

Design of a Propagation Wave Type Microrobot for Moving on the Slippery Surface

  • Kim, Eui-Jin;Park, Jong-Hyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2072-2077
    • /
    • 2003
  • Animal-like robots are serving an important role as a linkage between biology and engineering. So, in this paper, we aim to develop a biomimetic microrobot that mimics the locomotion mechanism of a gastropod. This microrobot has 3 DOF (x, y translation and rotation), and has small size, unlimited traveling range, high resolution and low cost. Its movement can be made using propagation wave that is generated by the controllable sinusoidal voltage source and piezoelectric effects. This soft motion that can be generated by propagation wave and piezoelectric mechanism would be useful for the motion on the slippery surface. So we modeled the propagation wave mechanism including piezoelectric effect and friction on the contact surface, and could know the velocity of the microrobot is dependent on the driving frequency, input voltage peak, propagation wavelength and surface friction coefficient. With these results we design the microrobot, and accomplish its fabrication and experimentation. The development of this microrobot shall be aimed to design an autonomous moving actuator like animal. Also it can be used from micromanipulation system technology to biology and medicine.

  • PDF

A study on the piezoelectric properties with PZT/PVDF composites of O-3 connectivity (O-3형 PZT/PVDF 복합재료의 압전특성에 관한 연구)

  • Choi, Yong;Kim, Yong-Huck;Kim, Ho-Gi;Lee, Deok-Chool
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.254-256
    • /
    • 1987
  • In this study, piezoelectric composite materials of O-3 connectivity were made by, mixing FZT ceramics with polymers, the dependence of volume % PZT and poling condition for dielectric and piezoelectric properties were investigated. The measured value of dielectric constant was dependent on the volume % PZT, which was exponentially increased with volume %PZT. Piezoelectric coefficient ($\bar{d}_{33}$) was exponentially increased with volume % PZT. Voltage coefficient ($\bar{g}_{33}$) was decreased with volume % PZT, but it was larger than that of single phase PZT ($\bar{g}_{33}$) because the dielectric constant ($\bar{\varepsilon}_{33}$) of composite materials was decreased.

  • PDF

Electrical Characteristics of the Hexagon-type Piezoelectric Transformer (육각형 압전변압기의 전기적 출력 특성)

  • Lee, Jong-Pil;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.296-299
    • /
    • 2002
  • In this paper, a hexagon-type piezoelectric transformer was investigated to increase the output power. The length of its side was 14mm and 17.5mm, respectively. The piezoelectric ceramics was composed to PZT-PMN-PSN. This composition showed the characteristics which had an about 1500 of the mechanical Q-factor, 0.55 of the electromechanical coupling coefficient, $320{\times}10^{-12}C/N$ of the piezoelectric constant $d_{31}$, 0.3 % of the dissipation factor, etc. The voltage step-up ratio increased with increasing the load resistance, $R_{L}$, so it reached 80 with $R_{L}$ of $1M{\Omega}$ and was proportion to the length of side of the hexagon-type piezoelectric transformer. Also, the output power increased with increasing the size of the hexagon-type piezoelectric transformer.

  • PDF

A comprehensive analysis on the discretization method of the equation of motion in piezoelectrically actuated microbeams

  • Zamanian, M.;Rezaei, H.;Hadilu, M.;Hosseini, S.A.A.
    • Smart Structures and Systems
    • /
    • v.16 no.5
    • /
    • pp.891-918
    • /
    • 2015
  • In many of microdevices a part of a microbeam is covered by a piezoelectric layer. Depend on the application a DC or AC voltage is applied between upper and lower side of the piezoelectric layer. A common method in many of previous works for evaluating the response of these structures is discretizing by Galerkin method. In these works often single mode shape of a uniform microbeam i.e. the microbeam without piezoelectric layer has been used as comparison function, and so the convergence of the solution has not been verified. In this paper the Galerkin method is used for discretization, and a comprehensive analysis on the convergence of solution of equation that is discretized using this comparison function is studied for both clamped-clamped and clamped-free microbeams. The static and dynamic solution resulted from Galerkin method is compared to the modal expansion solution. In addition the static solution is compared to an exact solution. It is denoted that the required numbers of uniform microbeam mode shapes for convergence of static solution due to DC voltage depends on the position and thickness of deposited piezoelectric layer. It is shown that when the clamped-clamped microbeam is coated symmetrically by piezoelectric layer, then the convergence for static solution may be obtained using only first mode. This result is valid for clamped-free case when it is covered by piezoelectric layer from left clamped side to the right. It is shown that when voltage is AC then the number of required uniform microbeam shape mode for convergence is much more than the number of required mode in modal expansion due to the dynamic effect of piezoelectric layer. This difference increases by increasing the piezoelectric thickness, the closeness of the excitation frequency to natural frequency and decreasing the damping coefficient. This condition is often indefeasible in microresonator system. It is concluded that discreitizing the equation of motion using one mode shape of uniform microbeam as comparison function in many of previous works causes considerable errors.

A Study on the preparation of optimum piezoelectric organic thin films of PVD method and switch characteristic (진공증착법을 이용한 최적의 압전성 유기박막의 제조와 스위치 특성에 관한 연구)

  • 박수홍;이선우;이희규
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3A
    • /
    • pp.194-200
    • /
    • 1999
  • In this paper studied was the piezoelectric properties of the $\beta$-PVDF organic thin films prepared by physical vapour deposition method. The molecular orientation of organic thin films was controlled by the application of an electric field and variation of substrate temperature during the evaporation process. Optimum conditions of manufacturing $\beta$-PVDF organic thin film by physical vapor deposition method is to keep at the substrate temperature of $80^{\circ}C$, at the applied electric field of 142.8 kV/cm. The voltage output coefficient increased from 1.39 to 7.04V increasing the force moment.

  • PDF

Pulse-echo response of 1-3 type piezoelectric composite transducers for distance measurement (거리 측정용 1-3형 복합압전체 트랜스듀서의 펄스에코 응답 특성)

  • 최헌일;박정학;이수호;사공건
    • Electrical & Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.211-216
    • /
    • 1995
  • In this study, the piezoelectric ceramics/polymer composite transducers with 1-3 connectivity have been studied. A piezoelectric ceramics PZT prepared by Wet-Dry Combination method was used as a filler in polymer matrix Eccogel. We've got the pulse-echo response for 1-3 type piezc-electric composite transducers in water. It was shown that the transmitting and receiving sensitivity of 1-3 type piezoelectric composite transducers could be improved in comparison with that- of solid PZT transducers. The reason is for that 1-3 type Piezoelectric composites have low dielectric constant and density. There was in a good agreement between the resonant frequencies calculated from one period and observed results on the Ultrasonic Transducer Analyzer. According to these results we could be figured out the distance in water by virture of the pulse-echo response.

  • PDF

High Magnetoelectric Properties in 0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 Single Crystal and Terfenol-D Laminate Composites

  • Ryu, Jung-Ho;Priya, Shashank;Uchino, Kenji;Kim, Hyoun-Ee;Viehland, Dwight
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.9
    • /
    • pp.813-817
    • /
    • 2002
  • Magnetoelectric(ME) laminate composites of $Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3 (PMN-PT)$ and Terfenol-D were prepared by sandwiching single crystals of PMN-PT between Terfenol-D disks. The magnetoelectric voltage coefficient (dE/dH) of the composite was determined to be 10.30 V/cm${\cdot}$Oe, at 1 kHz and under a dc magnetic bias of 0.4 T. The value of dE/dH is ∼80 times higher than either that of naturally occurring magnetoelectrics or artificially-grown magnetoelectric composites. This superior magnetoelectric voltage coefficient is attributed to the high piezoelectric voltage constant as well as the high elastic compliance of PMN-PT single crystal and the large magnetostrictive response of Terfenol-D.

Effect of Dimension Control of Piezoelectric Layer on the Performance of Magnetoelectric Laminate Composite

  • Cho, Kyung-Hoon
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.611-614
    • /
    • 2018
  • Laminate composites composed of $0.95Pb(Zr_{0.52}Ti_{0.48})O_3-0.05Pb(Mn_{1/3}Sb_{2/3})O_3$ piezoelectric ceramic and Fe-Si-B based magnetostrictive amorphous alloy are fabricated, and the effect of control of the areal dimensions and the thickness of the piezoelectric layer on the magnetoelectric(ME) properties of the laminate composites is studied. As the aspect ratio of the piezoelectric layer and the magnetostrictive layer increases, the maximum value of the ME voltage coefficient(${\alpha}_{ME}$) increases and the intensity of the DC magnetic field at which the maximum ${\alpha}_{ME}$ value appears decreases. Moreover, as the thickness of the piezoelectric layer decreases, ${\alpha}_{ME}$ tends to increase. The ME composites exhibit ${\alpha}_{ME}$ values higher than $1Vcm^{-1}Oe^{-1}$ even at the non-resonance frequency of 1 kHz. This study shows that, apart from the inherent characteristics of the piezoelectric composition, small thicknesses and high aspect ratios of the piezoelectric layer are important dimensional determinants for achieving high ME performance of the piezoelectric-magnetostrictive laminate composite.

Transverse Piezoelectric Coefficient ($e_{31,f}$) of Thick PZT films Fabricated by Sol-Gel Method with Thicknesses, Electrode Shapes and Poling Process (Sol-Gel 법으로 제조된 후막 PZT의 두께, 전극형상 및 분극 공정에 따른 $e_{31,f}$ 특성)

  • Park, Joon-Shik;Yang, Seong-Jun;Park, Kwang-Bum;Yoon, Dae-Won;Park, Hyo-Derk;Kim, Sung-Hyun;Kang, Sung-Goon;Choi, Tae-Hoon;Lee, Nak-Kyu;Na, Kyoung-Hoan
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1326-1331
    • /
    • 2003
  • Thick PZT films are required for the cases of micro actuators and sensors with high driving force, high breakdown voltage and high sensitivity, and so on. In this work, thick PZT films were fabricated by Sol-Gel multi-coating method. Total 8 types of samples using thick PZT films with thicknesses, about $1{\mu}m$ and $2{\mu}m$, and Pt top electrodes shapes for measuring transverse piezoelectric coefficient ($e_{31,f}$) were fabricated using MEMS processes. They were characterized by fabricated e31,f measurement system before and after poling. $e_{31,f}$ values of samples after poling were higher than before poling. Those of $2{\mu}m$ thick PZT films were also higher than $1{\mu}m$ thick PZT films. And those with long electrodes as top electrodes were also higher than shorter.

  • PDF