• Title/Summary/Keyword: piezoelectric materials

Search Result 922, Processing Time 0.031 seconds

Flutter Suppression of Cantilevered Plate Wing using Piezoelectric Materials

  • Makihara, Kanjuro;Onoda, Junjiro;Minesugi, Kenji
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.70-85
    • /
    • 2006
  • The supersonic flutter suppression of a cantilevered plate wing is studied with the finite element method and the quasi-steady aerodynamic theory. We suppress wing flutter by using piezoelectric materials and electric devices. Two approaches to flutter suppression using piezoelectric materials are presented; an energy-recycling semi-active approach and a negative capacitance approach. To assess their flutter suppression performances, we simulate flutter dynamics of the plate wing to which piezoelectric patches are attached. The critical dynamic pressure drastically increases with our flutter control using a negative capacitor.

Influence of Circular Void on a Crack in a Piezoelectric Material (압저재료에서 원공결함이 균열에 미치는 영향)

  • 이종권;조종두
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.539-542
    • /
    • 2000
  • In this paper, the influence of circular void on a crack in piezoelectric materials under mechanical and electric loads is investigated by using finite element method code, ANSYS. Both ceramics and piezoelectric materials are compared with stress intensity factor and crack extension force at crack tip on arbitrary located circular void under Mode I loads. It was found that piezoelectric materials's crack extension force is larger than ceramics.

  • PDF

Piezoelectric Ultrasound MEMS Transducers for Fingerprint Recognition

  • Jung, Soo Young;Park, Jin Soo;Kim, Min-Seok;Jang, Ho Won;Lee, Byung Chul;Baek, Seung-Hyub
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.286-292
    • /
    • 2022
  • As mobile electronics become smarter, higher-level security systems are necessary to protect private information and property from hackers. For this, biometric authentication systems have been widely studied, where the recognition of unique biological traits of an individual, such as the face, iris, fingerprint, and voice, is required to operate the device. Among them, ultrasound fingerprint imaging technology using piezoelectric materials is one of the most promising approaches adopted by Samsung Galaxy smartphones. In this review, we summarize the recent progress on piezoelectric ultrasound micro-electro-mechanical systems (MEMS) transducers with various piezoelectric materials and provide insights to achieve the highest-level biometric authentication system for mobile electronics.

(K,Na)NbO3-based Lead-free Piezoelectric Materials: An Encounter with Scanning Probe Microscopy

  • Zhang, Mao-Hua;Thong, Hao Cheng;Lu, Yi Xue;Sun, Wei;Li, Jing-Feng;Wang, Ke
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.4
    • /
    • pp.261-271
    • /
    • 2017
  • Environment-friendly $(K,Na)NbO_3-based$ (KNN) lead-free piezoelectric materials have been studied extensively in the past decade. Significant progress has been made in this field, manifesting competitive piezoelectric performance with that of lead-based, for specific application scenarios. Further understanding of the relationship between high piezoelectricity and microstructure or more precisely, ferroelectric domain structure, domain wall pinning effect, domain wall conduction and local polarization switching underpins the continuous advancement of piezoelectric properties, with the help of piezoresponse force microscopy (PFM). In this review, we will present the fundamentals of scanning probe microscopy (SPM) and its cardinal derivative in piezoelectric and ferroelectric world, PFM. Some representative operational modes and a variety of recent applications in KNN-based piezoelectric materials are presented. We expect that PFM and its combination with some newly developed technology will continue to provide great insight into piezoelectric materials and structures, and will play a valuable role in promoting the performance to a new level.

Enhancement in Piezoelectric Properties of PZT-Based Ceramics by High Energy Ball-Milling Treatment of Solid-State Synthesized Powders

  • Kim, Dae-Uk;Lee, Han-Bok;Hung, Nguyen Viet;Pham, Ky Nam;Han, Hyoung-Su;Lee, Jae-Shin
    • Journal of Powder Materials
    • /
    • v.17 no.5
    • /
    • pp.404-408
    • /
    • 2010
  • The effects of high energy ball-milling (HEBM) on the sintering behavior and piezoelectric properties of 0.1 wt% $Li_2CO_3$ doped 0.8Pb($Mg_{1/3}Nb_{2/3}$)$O_3$-0.2Pb($Zr_{0.475}Ti_{0.525}$)$O_3$ (PMN-PZT) ceramics were investigated. It was found that HEBM treatment was quite effective to reduce the average particle size down to 300 nm, leading to increased density as well as enhanced piezoelectric properties of a sintered specimen even though prolonged HEBM resulted in unwanted secondary phases that caused a degradation of piezoelectric properties. The dielectric constant ($\varepsilon_r$), piezoelectric coupling factor ($k_p$) and piezoelectric constant $d_{33}$ of 0.1 wt% $Li_2CO_3$ doped PMN-PZT ceramics prepared via HEBM for 10 h reached 2040, 0.68 and 554 pC/N, respectively.

Short Review of 3D Printed Piezoelectric Sensors

  • Chang, Sang-Mi;Kang, Chong-Yun;Hur, Sunghoon
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.279-285
    • /
    • 2022
  • Recently, 3D printing technology has gained increased attention in the manufacturing industry because it allows the manufacturing of complex but sophisticated structures as well as moderate production speed. Owing to advantages of 3D printers, such as flexible design, customization, rapid prototyping, and ease of access, can also be advantageous to sensor developments, 3D printing demands have increased in various active device fields, including sensor manufacturing. In particular, 3D printing technology is of significant interest in tactile sensor development where piezoelectric materials are typically embedded to acquire voltage signals from external stimuli. In regard with piezoelectricity, researchers have worked with various piezoelectric materials to achieve high piezoelectric response, but the structural approach is limited because ceramics have been regarded as challenging materials for complex design owing to their limited manufacturing methods. If appropriate piezoelectric materials and approaches to design are used, sensors can be fabricated with the improved piezoelectric response and high sensitivity that cannot be found in common bulk materials. In this study, various 3D printing technologies, material combinations, and applications of various piezoelectric sensors using the 3D printing method are reviewed.

Characteristics and Fabrication of Multi-Layered Piezoelectric Ceramic Actuators for Speaker Application (스피커 응용을 위한 적층형 압전 세라믹 액츄에이터 제조 및 특성)

  • Lee, Min-seon;Yun, Ji-sun;Park, Woon Ik;Hong, Youn-Woo;Paik, Jong Hoo;Cho, Jeong Ho;Park, Yong-Ho;Jeong, Young-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.10
    • /
    • pp.601-607
    • /
    • 2016
  • Piezoelectric thick films of soft $Pb(Zr,Ti)O_3$ (PZT) based commercial material (S55) were fabricated using a conventional tape casting method. Ag-Pd electrodes were printed on the piezoelectric film at room temperature and all 5 layered films with a dimension of $12mm{\times}16mm$ were successfully laminated for a multi-layered piezoelectric ceramic actuator. The laminated specimens were co-fired at $1,100^{\circ}C$ for 1 h. A flat layered and dense microstructure was obtained for the $112{\mu}m$ thick piezoelectric actuator after sintering process. Thereafter, a prototype piezoelectric speaker was fabricated using the multi-layered piezoelectric ceramic actuator which can operate as a bimorph. Its SPL (sound pressure level) characteristic was also evaluated for speaker application. Frequency response revealed that the output SPL with a root mean square voltage of 10 V increased gradually to the highest peak of 87.5 dB for 1.5 kHz and exhibited a relatively stable behavior over the measured frequency range (${\leq}20kHz$) at a distance of 10 cm, implying that the fabricated piezoelectric speaker is potential for speaker applications.

Transmitted sound reduction performance of smart panels with different piezoelectric materials through piezo-damping (압전재료에 따른 지능패널의 전달소음저감성능)

  • 이중근;김재환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.127-132
    • /
    • 2001
  • In this paper, transmitted sound reduction performance of smart panels is studied according to different piezoelectric materials with piezoelectric shunt damping. Peizo-damping is implemented by using a newly proposed tuning method. This method is based on electrical impedance model and maximizing the dissipated energy at the shunt circuit. By measuring the electrical impedance at the piezoelectric patch bonded on a structure, an equivalent electrical model is constructed near the system resonance frequency. After shunting elements are connected to the equivalent circuit, the shunt parameters are optimally searched based on the criterion of maximizing the dissipated energy at the shunt circuit. Transmitted sound reduction performance is compared according to different piezoelectric materials with peizo-damping. Two piezoelectric materials are selected: PZT-5 and QuickPack IDE actuator. When resonant shunt circuit is considered, the use of PZT-5 exhibited the good sound reduction performance.

  • PDF

Structural Analysis and Characterization of PZT Fiber Fabricated by Electrospinning (Electrospinning법으로 제조된 PZT 섬유의 구조분석 및 특성평가)

  • Park, Chun Kil;Yun, Ji Sun;Jeong, Young Hun;Nam, Joong-Hee;Cho, Jeong Ho;Paik, Jong-Hoo;Jeong, Dae Young
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.466-469
    • /
    • 2013
  • Currently, piezoelectric ceramics are being applied in various fields, such as ultrasonic sensors, vibration devices, sound filters, and various energy conversion devices. Flexible piezoelectric ceramics are widely studied in an effort to mitigate the disadvantages of their brittle and inductile properties. Structural damage to piezoelectric fibers is much less than that to thin films when piezoelectric fibers are twisted or bent. Therefore, stretchable devices can be fabricated if piezoelectric fibers are obtained using an elongated substrate. In this study, sintering processes of PZT ($Pb(Zr_{0.53}Ti_{0.47})O_3$) fibers prepared by electrospinning were optimized through the TGA and XRD analyses. The crystal structure and microstructure of the piezoelectric fibers were investigated by XRD, FE-SEM and TEM.

Study of Broadband Piezoelectric Harvester using the Bender-Type Module (벤더형 모듈을 이용한 광대역 압전 하베스터 연구)

  • Kim, Chang Il;Kwon, Tae Hyeong;Yeo, Seo Yeong;Yun, Ji Sun;Jeong, Young Hun;Hong, Youn Woo;Cho, Jeong Ho;Paik, Jong Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.112-117
    • /
    • 2018
  • In this study, a bender-type piezoelectric energy harvester was fabricated and evaluated to compensate for the disadvantages of high-power generation only in the resonance frequency range of a piezoelectric harvester using a piezoelectric cantilever. The generated power was investigated according to various changes in the vibration environment. Compared with the piezoelectric cantilever module, the bender-type piezoelectric module showed a larger number of peak voltages. The primary peak voltage shifted toward the low frequency when the spring was coupled to the bender-type piezoelectric module. The harvester of the three bender-type modules had a vibration frequency exceeding 1 mW in the 34-45 Hz range and generated 3.112 mW of power at the vibration frequency of 38 Hz. The harvester of the six bender-type modules had a vibration frequency exceeding 1 mW in the 31-45 Hz range and generated 3.081 mW of power at the vibration frequency of 35 Hz.