DOI QR코드

DOI QR Code

Enhancement in Piezoelectric Properties of PZT-Based Ceramics by High Energy Ball-Milling Treatment of Solid-State Synthesized Powders

  • Kim, Dae-Uk (School of Materials Science and Engineering, University of Ulsan) ;
  • Lee, Han-Bok (School of Materials Science and Engineering, University of Ulsan) ;
  • Hung, Nguyen Viet (School of Materials Science and Engineering, University of Ulsan) ;
  • Pham, Ky Nam (School of Materials Science and Engineering, University of Ulsan) ;
  • Han, Hyoung-Su (School of Materials Science and Engineering, University of Ulsan) ;
  • Lee, Jae-Shin (School of Materials Science and Engineering, University of Ulsan)
  • Received : 2010.09.03
  • Accepted : 2010.10.05
  • Published : 2010.10.28

Abstract

The effects of high energy ball-milling (HEBM) on the sintering behavior and piezoelectric properties of 0.1 wt% $Li_2CO_3$ doped 0.8Pb($Mg_{1/3}Nb_{2/3}$)$O_3$-0.2Pb($Zr_{0.475}Ti_{0.525}$)$O_3$ (PMN-PZT) ceramics were investigated. It was found that HEBM treatment was quite effective to reduce the average particle size down to 300 nm, leading to increased density as well as enhanced piezoelectric properties of a sintered specimen even though prolonged HEBM resulted in unwanted secondary phases that caused a degradation of piezoelectric properties. The dielectric constant ($\varepsilon_r$), piezoelectric coupling factor ($k_p$) and piezoelectric constant $d_{33}$ of 0.1 wt% $Li_2CO_3$ doped PMN-PZT ceramics prepared via HEBM for 10 h reached 2040, 0.68 and 554 pC/N, respectively.

Keywords

References

  1. J. Xue, D. Wan, S.E. Lee and J. Wang: J. Am. Cer. Soc., 82 (1999) 1687 https://doi.org/10.1111/j.1151-2916.1999.tb01987.x
  2. Z. Brankovic, G. Brankovic, Jovalekic, Y. Maniette, M. Cilense and J. A. Varela: Mat. Sci. Eng. A, 345 (2003) 243. https://doi.org/10.1016/S0921-5093(02)00475-6
  3. J. S. Lee, M. S. Choi, N. V. Hung, Y. S. Kim, I. W. Kim, E. C. Park, S. J. Jeong and J. S. Song: Ceramics Inter., 33 (2007) 1283. https://doi.org/10.1016/j.ceramint.2006.04.017
  4. Y. H. Kim, D. Y. Heo, W. P. Tai and J. S. Lee: J. Korean Ceramic Soc., 45 (2008) 363. https://doi.org/10.4191/KCERS.2008.45.6.363
  5. S. H. Kang, C. W. Ahn, H. J. Lee, I. W. Kim, E. C. Park and J. S. Lee: J. Electroceramics, 21 (2008) 855. https://doi.org/10.1007/s10832-008-9507-1
  6. J. S. Lee, M. S. Choi, H. S. Han, Y. M. Kong, S. J. Kim, I. W. Kim, M. S. Kim and S. J. Jeong: Sensors & Actuators: A. Physical, 154 (2009) 97. https://doi.org/10.1016/j.sna.2009.06.003
  7. J. S. Lee, E. C. Park, S. H. Lee, D. S. Lee, Y. J. Lee, J. S. Kim, I. W. Kim and B. M. Jin: Mat. Chem. Phys., 90 (2005) 381. https://doi.org/10.1016/j.matchemphys.2004.09.035
  8. C. Suryanarayana: Prog. Mater. Sci., 46 (2001) 1. https://doi.org/10.1016/S0079-6425(99)00010-9
  9. F. Grasset, S. Mornet, J. Etourneau, H. Haneda and J.-L. Bobet: J. Alloys Compounds, 359 (2003) 330. https://doi.org/10.1016/S0925-8388(03)00293-7
  10. M. Sherif El-Eskandarany: J. Alloys Compounds, 279 (1998) 263. https://doi.org/10.1016/S0925-8388(98)00658-6
  11. W. Jo, T. H. Kim, D. Y. Kim and S. K. Pabi: J. Appl. Phys., 102 (2007) 8.
  12. R. Sachana and J.W. Park: J. Alloys Compounds, 485 (2009) 724. https://doi.org/10.1016/j.jallcom.2009.06.063
  13. L. Li: Key Eng. Mat., 214 (2002) 49. https://doi.org/10.4028/www.scientific.net/KEM.214-215.49
  14. PCPDS cards no. 44-1054.
  15. B. D. Stojanovic, C. Jovalekic, V. Vukotic, A. Z. Simoes and J. A. Varela: Ferroelectrics, 319 (2005) 65. https://doi.org/10.1080/00150190590965424
  16. L. B. Kong, T. S. Zhang, J. Ma and F. Boey: Prog. Mater. Sci., 53 (2008) 207. https://doi.org/10.1016/j.pmatsci.2007.05.001