DOI QR코드

DOI QR Code

Piezoelectric Ultrasound MEMS Transducers for Fingerprint Recognition

  • Jung, Soo Young (Electronic Materials Research Center, Korea Institute of Science and Technology) ;
  • Park, Jin Soo (Bionics Research Center, Korea Institute of Science and Technology) ;
  • Kim, Min-Seok (Electronic Materials Research Center, Korea Institute of Science and Technology) ;
  • Jang, Ho Won (Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University) ;
  • Lee, Byung Chul (Bionics Research Center, Korea Institute of Science and Technology) ;
  • Baek, Seung-Hyub (Electronic Materials Research Center, Korea Institute of Science and Technology)
  • Received : 2022.09.05
  • Accepted : 2022.09.27
  • Published : 2022.09.30

Abstract

As mobile electronics become smarter, higher-level security systems are necessary to protect private information and property from hackers. For this, biometric authentication systems have been widely studied, where the recognition of unique biological traits of an individual, such as the face, iris, fingerprint, and voice, is required to operate the device. Among them, ultrasound fingerprint imaging technology using piezoelectric materials is one of the most promising approaches adopted by Samsung Galaxy smartphones. In this review, we summarize the recent progress on piezoelectric ultrasound micro-electro-mechanical systems (MEMS) transducers with various piezoelectric materials and provide insights to achieve the highest-level biometric authentication system for mobile electronics.

Keywords

Acknowledgement

The authors gratefully acknowledge financial support from the Samsung Research Funding & Incubation Center for Future Technology (SRFC-MA1702-03) and National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT (NRF-2020M3D1A2101933).

References

  1. Y. Qiu, J. V. Gigliotti, M Wallace, F. Griggio, C. E. M. Demore, S. Cochran, and S. Trolier-McKinstry, "Piezoelectric Micromachined Ultrasound Transducer (PMUT) Arrays for Integrated Sensing, Actuation and Imaging", Sens., Vol. 15, No. 4, pp. 8020-8041, 2015. https://doi.org/10.3390/s150408020
  2. P. N. Thao, S. Yoshida, and S. Tanaka, "Fabrication and Characterization of PZT Fibered-Epitaxial Thin Film on Si for Piezoelectric Micromachined Ultrasound Transducer", Micromachines, Vol. 9, No. 9, p. 455, 2018. https://doi.org/10.3390/mi9090455
  3. S. Trolier-McKinstry and P. Muralt, "Thin Film Piezoelectric for MEMS", J.Electroceram., Vol. 12, No. 1, pp. 7-17, 2004. https://doi.org/10.1023/B:JECR.0000033998.72845.51
  4. K. Tonisch, V. Cimalla, C. Foerster, H. Romanus, O.Ambacher, and D. Dontsov, "Piezoelectric Properties of Polycrystalline AlN Thin Films for MEMS Application", Sens. Actuators A: Phys., Vol. 132, No. 2, pp. 658-663, 2006. https://doi.org/10.1016/j.sna.2006.03.001
  5. R. M. R. Pinto, V. Gund, C. Calaza, K. K. Nagaraja, and K. B. Vinayakumar, "Piezoelectric Aluminum Nitride Thin-Films: A Review of Wet and Dry Etching Techniques", Microelectron. Eng., p.111753, 2022.
  6. B. R. Tittmann, D. Parks, and S. O. Zhang, "High Temperature Piezoelectrics - A Comparison", Proc. of 13th Int. Symp. on Nondestruct. Charact. of Mater., Le Mans, France, pp. 20-24, 2013.
  7. Q. Wang, Y. Lu, S. Fung, X. Jiang, S. Mishin, Y. Oshmyansky, and D.A. Horsley, "Scandim Doped Aluminum Nitride Based Piezoelectric Micromachined Ultrasound Transducers", Proc. of Solid-State Sens., Actuators, Microsyst. Workshop, pp. 436-439, 2016.
  8. S. Fichtner, N. Wolff, F. Lofink, L. Kienle, and B. Wagner, "AlScN: A III-V Semiconductor Based Ferroelectric", J. Appl. Phys., Vol. 125, No. 11, p. 114103, 2019. https://doi.org/10.1063/1.5084945
  9. K. S. Ramadan, D. Sameoto, and S. Evoy, "A Review of Piezoelectric Polymers as Functional Materials for Electromechanical Transducers", Smart Mater. Struct., Vol. 23, No. 3, p. 033001, 2014. https://doi.org/10.1088/0964-1726/23/3/033001
  10. II. J. C. Kitchens, J. K. Schneider, and S. M. Gojevic, "Ultrasonic Receiver with Coated Piezoelectric Layer", U.S. Patent 14/175,876, 07 Feb., 2014.
  11. J. C. Kitchens, J. K. Schneider, and S. M. Gojevic, "Piezoelectric Force Sensing Array", U. S. Patent 14/071,320, 04 Nov., 2013.
  12. Y. Lu, H. V. Panchawagh, K. D. Djordjev, J. H. Seo, N. I. Buchan, C.-J. Tseng, and T. Kao, "Ultrasonic Fingerprint Sensor with Flexible Substrate", U.S. Patent 11/126,814, 29 Jul., 2019.
  13. Y. Jiang, S. Shiono, H. Hamada, T. Fujita, K. Higuchi, and K. Maenaka, "Low-Frequency Energy Harvesting Using a Laminated PVDF Cantilever with a Magnetic Mass", Power MEMS, 2010, p. 375375, 2010.
  14. https://en.wikipedia.org/wiki/Lead_zirconate_titanate (retrieved on Aug. 29, 2022).
  15. https://en.wikipedia.org/wiki/Aluminium_nitride(retrieved on Aug. 29, 2022).
  16. T. Wu, H. Jin, S. Dong, W. Xuan, H. Xu, L. Lu, Z. Fang, S. Huang, X. Tao, L. Shi, S. Liu, and J. Luo, "A Flexible Film Bulk Acoustic Resonator Based on β-Phase Polyvinylidene Fluoride Polymer", Sensors, Vol. 20, No. 5, p. 1346, 2020. https://doi.org/10.3390/s20051346
  17. C. Peng, M. Chen, H. Wang, J. Shen, and X. Jiang, "P(VDF-TrFE) Thin-Film-Based Transducer for Under-Display Ultrasonic Fingerprint Sensing Applications", IEEE Sensors J., Vol. 20, No. 19, pp. 11221-11228, 2020. https://doi.org/10.1109/JSEN.2020.2997375
  18. Y. Lu and D. A. Horsley, "Modeling, Fabrication, and Characterization of Piezoelectric Micromachined Ultrasonic Transducer Arrays Based on Cavity SOI Wafers", J. Microelectromechanical Syst, Vol. 24, No. 4, pp. 1142-1149, 2015. https://doi.org/10.1109/JMEMS.2014.2387154
  19. E. Shin, H. G. Yeo, A. Yeon, C. Jin, W. Park, S.-C. Lee, and H. Choi, "Development of a High-Density Piezoelectric Micromachined Ultrasonic Transducer Array Based on Patterned Aluminum Nitride Thin Film", Micromachines, Vol. 11, No. 6, p. 623, 2020. https://doi.org/10.3390/mi11060623
  20. Y.-Q. Chen, Y.-X. Li, Y. Chen, Z.-Y. Ju, L.-Q. Tao, Y. Pang, Y. Yang, and T.-L. Ren, "Large-Scale and High-Density pMUT Array Based on Isolated Sol-Gel PZT Membranes for Fingerprint Imaging", J. Electrochem. Soc., Vol. 164, No. 7, pp. B337-B381, 2017.
  21. C. Chao, T.-Y. Lam, K.-W. Kwok, and H. L. W. Chan, "Piezoelectric Micromachined Ultrasonic Transducers Based on P(VDF-TrFE) Copolymer Thin Films", Proc. of 15th ieee Int. Symp. Appl. Ferroelectr., NC, USA, pp. 120-123, 2006.
  22. C. Sun, Q. Shi, M. S. Yazici, T. Kobayashi, Y. Liu, and C. Lee, "Investigation of Broadband Characteristics of Multi-Frequency Piezoelectric Micromachined Ultrasonic Transducer (MF-pMUT)", IEEE Sens. J., Vol. 19, No. 3, pp. 860-867, 2018.
  23. L. L. Wong, A. I. Chen, Z. Li, A. S. Logan, and J. T. Yeow, "A row-column addressed micromachined ultrasonic transducer array for surface scanning applications", Ultrasonics, Vol. 54, No. 8, pp. 2072-2080, 2014. https://doi.org/10.1016/j.ultras.2014.07.002
  24. S. Sedky, A. Witvrouw, H. Bender, and K. Baert, "Experimental Determination of the Maximum Post-Process Annealing Temperature for Standard CMOS Wafers", IEEE Trans. Electron Devices, Vol. 48, No. 2, pp. 377-385, 2001. https://doi.org/10.1109/16.902741
  25. M. R. Lim, Z. Sauli, H. Aris, V. Retnasamy, C. Lo, K. Muniandy, N. Khan, and C. S. Foong, "The Optimization of Ultrasonic Power and Bonding Time for Thermosonic Flip Chip Bonding", AIP Conf. Proc, Vol. 2045, No. 1, p. 020094, 2018.
  26. H.-Y. Tang, Y. Lu, X. Jiang, E. J. Ng, J. M. Tsai, D. A. Horsley, and B. E. Boser, "3-D Ultrasonic Fingerprint Sensor-on-a-Chip", IEEE J. Solid-State Circuits, Vol. 51, No. 11, pp. 2522-2533, 2016. https://doi.org/10.1109/JSSC.2016.2604291
  27. https://www.biometrika.it/eng/wp_scfing.html(retrieved on Aug. 23, 2022).
  28. X. Jiang, Y. Lu, H.-Y. Tang, J. M. Tsai, E. J. Ng, M. J. Daneman, B. E. Boser, and D. A. Horsley, "Monolithic Ultrasound Fingerprint Sensor", Microsyst. Nanoeng., Vol. 3, No. 1, p. 17059, 2017. https://doi.org/10.1038/micronano.2017.59
  29. Z. Liu, S. Yoshida, D. A. Horsley, and S. Tanaka, "Fabrication and characterization of row-column addressed pMUT array with monocrystalline PZT thin film toward creating ultrasonic imager", Sens. Actuators A: Phys., p. 113666, 2022.
  30. L. Fei, M. J. Cabral, B. Xu, Z. Cheng, E. C. Dickey, J. M. LeBeau, J. Wang, J. Luo, S. Taylor, W. Hackenberger, L. Bellaiche, Z. Xu, L.-Q. Chen, T. R. Shrout, and S. Zhang, "Giant Piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 Single Crystals", Sci., Vol. 364, No. 6437, pp. 264-268, 2019. https://doi.org/10.1126/science.aaw2781
  31. Y. Lu, H. Tang, S. Fung, Q. Wang, J. M. Tsai, M. Daneman, B. E. Boser, and D.A. Horsley, "Ultrasonic Fingerprint Sensor Using a Piezoelectric Micromachined Ultrasonic Transducer Array Integrated with Complementary Metal Oxide Semiconductor Electronics", Appl. Phys. Lett., Vol. 106, No. 26, p. 263503, 2015. https://doi.org/10.1063/1.4922915