DOI QR코드

DOI QR Code

Short Review of 3D Printed Piezoelectric Sensors

  • Chang, Sang-Mi (KU-KIST Graduate School of Converging Science and Technology, Korea University) ;
  • Kang, Chong-Yun (KU-KIST Graduate School of Converging Science and Technology, Korea University) ;
  • Hur, Sunghoon (Electronic Materials Research Center, Korea Institute of Science and Technology (KIST))
  • Received : 2022.09.01
  • Accepted : 2022.09.19
  • Published : 2022.09.30

Abstract

Recently, 3D printing technology has gained increased attention in the manufacturing industry because it allows the manufacturing of complex but sophisticated structures as well as moderate production speed. Owing to advantages of 3D printers, such as flexible design, customization, rapid prototyping, and ease of access, can also be advantageous to sensor developments, 3D printing demands have increased in various active device fields, including sensor manufacturing. In particular, 3D printing technology is of significant interest in tactile sensor development where piezoelectric materials are typically embedded to acquire voltage signals from external stimuli. In regard with piezoelectricity, researchers have worked with various piezoelectric materials to achieve high piezoelectric response, but the structural approach is limited because ceramics have been regarded as challenging materials for complex design owing to their limited manufacturing methods. If appropriate piezoelectric materials and approaches to design are used, sensors can be fabricated with the improved piezoelectric response and high sensitivity that cannot be found in common bulk materials. In this study, various 3D printing technologies, material combinations, and applications of various piezoelectric sensors using the 3D printing method are reviewed.

Keywords

Acknowledgement

We would like to acknowledge the support of the National R&D Program of the National Research Foundation of Korea (NRF) (NRF-2020M3H4A3105594) and the Korea Institute of Science and Technology (2E31796). We also thank the KU-KIST graduate school program of Korea University.

References

  1. Y. Jung and H. Cho, "Flexible Pressure Sensors Based on Three-dimensional Structure for High Sensitivity", J. Sens. Sci. Technol., Vol. 31, No. 3, pp. 145-150, 2022. https://doi.org/10.46670/JSST.2022.31.3.145
  2. D. S. Yao, H. C. Cui, R. Hensleigh, P. Smith, S. Alford, D. Bernero, S. Bush, K. Mann, H. F. Wu, M. Chin-Nieh, G. Youmans, and X. Y. Zheng, "Achieving the Upper Bound of Piezoelectric Response in Tunable, Wearable 3D Printed Nanocomposites", Adv. Funct. Mater., Vol. 29, No. 42, p.1903866, 2019. https://doi.org/10.1002/adfm.201903866
  3. H. C. Cui, R. Hensleigh, D. S. Yao, D. Maurya, P. Kumar, M. G. Kang, S. Priya, and X. Y. Zheng, "Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response", Nat. Mater., Vol. 18, No. 3, pp. 234-241, 2019. https://doi.org/10.1038/s41563-018-0268-1
  4. X. R. Zhou, K. Parida, O. Halevi, S. Magdassi, and P. S. Lee, "All 3D Printed Stretchable Piezoelectric Nanogenerator for Self-Powered Sensor Application", Sensors, Vol. 20, No. 23, p. 6748, 2020. https://doi.org/10.3390/s20236748
  5. N. Rubab and S.-W. Kim, "Triboelectric Nanogenerators for Self-powered Sensors", J. Sens. Sci. Technol., Vol. 31, No. 2, pp. 79-84, 2022. https://doi.org/10.46670/JSST.2022.31.2.79
  6. H. Park, J. Kim, and J.-H. Lee, "Triboelectrification based Multifunctional Tactile Sensors", J. Sens. Sci. Technol., Vol. 31, No. 3, pp. 139-144, 2022. https://doi.org/10.46670/JSST.2022.31.3.139
  7. T. Kim and I. Park, "Skin-interfaced Wearable Biosensors: A Mini-Review", J. Sens. Sci. Technol., Vol. 31, No. 2, pp. 71-78, 2022. https://doi.org/10.46670/JSST.2022.31.2.71
  8. T. A. Duong, H. T. K. Nguyen, S.-S. Lee, C. W. Ahn, B. W. Kim, J. S. Lee, and H. S. Han, "Enhancement of electromechanical properties in lead-free (1-x)K0.5Na0.5O3-xBaZrO3 piezoceramics", J. Sens. Sci. Technol., Vol. 30, No. 6, pp. 408-414, 2022.
  9. E. R. Cholleti, "A Review on 3D printing of piezoelectric materials" IOP Conf. Ser.: Mater. Sci. Eng., Vol. 455, No. 1, p. 012046, 2018. https://doi.org/10.1088/1757-899X/455/1/012046
  10. K. K. Sappati and S. Bhadra, "Piezoelectric Polymer and Paper Substrates: A Review", Sensors, Vol. 18, No. 11, p. 3605, 2018. https://doi.org/10.3390/s18113605
  11. R. P. Chaudhary, C. Parameswaran, M. Idrees, A. S. Rasaki, C. Y. Liu, Z. W. Chen, and P. Colombo, "Additive manufacturing of polymer-derived ceramics: Materials, technologies, properties and potential applications", Prog. Mater. Sci., Vol. 128, p. 100969, 2022. https://doi.org/10.1016/j.pmatsci.2022.100969
  12. Z. C. Eckel, C. Zhou, J. H. Martin, A. J. Jacobsen, W. B. Carter, and T. A. Schaedler, "Additive manufacturing of polymer-derived ceramics", Science, Vol. 351, No. 6268, pp. 58-62, 2016. https://doi.org/10.1126/science.aad2688
  13. S. A. Brinckmann, N. Patra, J. Yao, T. H. Ware, C. P. Frick, and R. S. Fertig III, "Stereolithography of SiOC polymerderived ceramics filled with SiC micronwhiskers", Adv. Eng. Mater., Vol. 20, No. 11, p. 1800593, 2018. https://doi.org/10.1002/adem.201800593
  14. Z. Chen, Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, and Y. He, "3D printing of ceramics: A review", J. Eur. Ceram. Soc., Vol. 39, No. 4, pp. 661-689, 2019. https://doi.org/10.1016/j.jeurceramsoc.2018.11.013
  15. Y. Huang, X. Y. Fan, S. C. Chen, and N. Zhao, "Emerging Technologies of Flexible Pressure Sensors: Materials, Modeling, Devices, and Manufacturing", Adv. Funct. Mater., Vol. 29, No. 12, p. 1808509, 2019. https://doi.org/10.1002/adfm.201808509
  16. Y. W. Shao, Y. L. Zhao, M. J. Liu, Q. Zhang, and C. Q. Liu, "Flexible Force Sensor with Micro-pyramid Arrays Based on 3D Printing", 2018 IEEE Sens., pp. 1-4, 2018.
  17. Q. Ge, Z. Chen, J. X. Cheng, B. Zhang, Y. F. Zhang, H.G. Li, X. N. He, C. Yuan, J. Liu, S. Magdassi, and S. X. Qu, "3D printing of highly stretchable hydrogel with diverse UV curable polymers", Sci. Adv., Vol. 7, No. 2, p. eaba4261, 2021. https://doi.org/10.1126/sciadv.aba4261
  18. X. J. Li, Y. Yang, B. S. Xie, M. Chu, H. F. Sun, S. Y. Hao, Y. Y. Chen, and Y. Chen, "3D Printing of Flexible Liquid Sensor Based on Swelling Behavior of Hydrogel with Carbon Nanotubes", Adv. Mater. Technol., Vol. 4, No. 2, p. 1800476, 2019. https://doi.org/10.1002/admt.201800476
  19. S. Hasan, A. Z. Kouzani, S. Adams, J. Long, and M. A. P. Mahmud, "Recent progress in hydrogel-based sensors and energy harvesters", Sens. Actuator A Phys., Vol. 335, p. 113382, 2022. https://doi.org/10.1016/j.sna.2022.113382
  20. X. Y. Sui, J. R. Downing, M. C. Hersam, and J. H. Chen, "Additive manufacturing and applications of nanomaterial-based sensors", Mater. Today, Vol. 48, pp.135-154, 2021. https://doi.org/10.1016/j.mattod.2021.02.001
  21. L. J. Y. Tan, W. Zhu, and K. Zhou, "Recent Progress on Polymer Materials for Additive Manufacturing", Adv. Funct. Mater., Vol. 30, No. 43, p. 2003062, 2020. https://doi.org/10.1002/adfm.202003062
  22. X. F. Chen, H. O. T. Ware, E. Baker, W. S. Chu, J. M. Hu, and C. Sun, "The development of an all-polymer-based piezoelectric photocurable resin for additive manufacturing", Procedia CIRP, Vol. 65, pp. 157-162, 2017. https://doi.org/10.1016/j.procir.2017.04.025
  23. J. Zhang, N. Amini, D. A. V. Morton, and K. P. Hapgood, "3D printing with particles as feedstock materials", Adv. Powder Technol., Vol. 32, No. 9, pp. 3324-3345, 2021. https://doi.org/10.1016/j.apt.2021.07.022
  24. W. Y. Zhao, Z. Y. Wang, J. P. Zhang, X. P. Wang, Y. T. Xu, N. Ding, and Z. C. Peng, "Vat Photopolymerization 3D Printing of Advanced Soft Sensors and Actuators: From Architecture to Function", Adv. Mater. Technol., Vol. 6, No. 8, p. 2001218, 2021. https://doi.org/10.1002/admt.202001218
  25. S. Bodkhe and P. Ermanni, "Challenges in 3D printing of piezoelectric materials", Multifunct. Mater., Vol. 2, No. 2, p. 022001, 2019. https://doi.org/10.1088/2399-7532/ab0c41
  26. D. Waller, T. Iqbal, and A. Safari, "Poling of Lead Zirconate Titanate Ceramics and Flexible Piezoelectric Composites by the Corona Discharge Technique", J. Am. Ceram. Soc., Vol. 72, No. 2, pp. 322-324, 1989. https://doi.org/10.1111/j.1151-2916.1989.tb06125.x
  27. K. Kim, W. Zhu, X. Qu, C. Aaronson, W. R. McCall, S. C. Chen, and D. J. Sirbuly, "3D Optical Printing of Piezoelectric Nanoparticle - Polymer Composite Materials", ACS Nano, Vol. 8, No. 10, pp. 9799-9806, 2014. https://doi.org/10.1021/nn503268f
  28. W. C. Chen, F. F. Wang, K. Yan, Y. H. Zhang, and D. W. Wu, "Micro-stereolithography of KNN-based lead-free piezoceramics", Ceram. Int., Vol. 45, No. 4, pp. 4880-4885, 2019. https://doi.org/10.1016/j.ceramint.2018.11.185
  29. J. Zhang, S. B. Ye, H. L. Liu, X. L. Chen, X. M. Chen, B. T. Li, W. H. Tang, Q. C. Meng, P. Ding, H. M. Tian, X. M. Li, Y. F. Zhang, P. J. Xu, and J. Y. Shao, "3D printed piezoelectric BNNTs nanocomposites with tunable interface and microarchitectures for self-powered conformal sensors", Nano Energy, Vol. 77, p. 105300, 2020. https://doi.org/10.1016/j.nanoen.2020.105300
  30. R. Hensleigh, H. C. Cui, Z. P. Xu, J. Massman, D. S. Yao, J. Berrigan, and X. Y. Zheng, "Charge-programmed three-dimensional printing for multi-material electronic devices", Nat. Electron, Vol. 3, No. 4, pp. 216-224, 2020. https://doi.org/10.1038/s41928-020-0391-2
  31. Y. Wang, L. Zhu, and C. Du, "Progress in Piezoelectric Nanogenerators Based on PVDF Composite Films", Micromachines, Vol. 12, No. 11, p. 1278, 2021. https://doi.org/10.3390/mi12111278
  32. H. Kim, L. C. D. Manriquez, M. T. Islam, L. A. Chavez, J. E. Regis, M. A. Ahsan, J. C. Noveron, T. L. B. Tseng, and Y. R. Lin, "3D printing of polyvinylidene fluoride/photopolymer resin blends for piezoelectric pressure sensing application using the stereolithography technique", MRS Commun., Vol. 9, No. 3, pp. 1115-1123, 2019. https://doi.org/10.1557/mrc.2019.109
  33. S. Peng, Y. Li, L. Wu, J. Zhong, Z. Weng, L. Zheng, Z. Yang, and J.-T. Miao, " 3D Printing Mechanically Robust and Transparent Polyurethane Elastomers for Stretchable Electronic Sensors", ACS Appl. Mater. Interfaces, Vol. 12, No. 5, pp. 6479-6488, 2020. https://doi.org/10.1021/acsami.9b20631
  34. K. Yu, A. Xin, H. Du, Y. Li, and Q. Wang, " Additive manufacturing of self-healing elastomers", NPG Asia Mater., Vol. 11, No. 1, pp. 1-11, 2019. https://doi.org/10.1038/s41427-018-0100-z
  35. Q. Mu, L. Wang, C.-K. Dunn, X. Kuang, F. Duan, Z. Zhang, H. J. Qi, and T. Wang, "Digital light processing 3D printing of conductive complex structures", Addit. Manuf., Vol. 18, pp. 74-83, 2017.
  36. X.-Y. Yin, Y. Zhang, X. Cai, Q. Guo, J. Yang, and Z. L. Wang, "3D printing of ionic conductors for high-sensitivity wearable sensors", Mater. Horiz., Vol. 6, No. 4, pp. 767-780, 2019. https://doi.org/10.1039/C8MH01398E