Browse > Article
http://dx.doi.org/10.46670/JSST.2022.31.5.279

Short Review of 3D Printed Piezoelectric Sensors  

Chang, Sang-Mi (KU-KIST Graduate School of Converging Science and Technology, Korea University)
Kang, Chong-Yun (KU-KIST Graduate School of Converging Science and Technology, Korea University)
Hur, Sunghoon (Electronic Materials Research Center, Korea Institute of Science and Technology (KIST))
Publication Information
Journal of Sensor Science and Technology / v.31, no.5, 2022 , pp. 279-285 More about this Journal
Abstract
Recently, 3D printing technology has gained increased attention in the manufacturing industry because it allows the manufacturing of complex but sophisticated structures as well as moderate production speed. Owing to advantages of 3D printers, such as flexible design, customization, rapid prototyping, and ease of access, can also be advantageous to sensor developments, 3D printing demands have increased in various active device fields, including sensor manufacturing. In particular, 3D printing technology is of significant interest in tactile sensor development where piezoelectric materials are typically embedded to acquire voltage signals from external stimuli. In regard with piezoelectricity, researchers have worked with various piezoelectric materials to achieve high piezoelectric response, but the structural approach is limited because ceramics have been regarded as challenging materials for complex design owing to their limited manufacturing methods. If appropriate piezoelectric materials and approaches to design are used, sensors can be fabricated with the improved piezoelectric response and high sensitivity that cannot be found in common bulk materials. In this study, various 3D printing technologies, material combinations, and applications of various piezoelectric sensors using the 3D printing method are reviewed.
Keywords
Piezoelectricity; Tactile sensor; 3D printing; 3D printed sensors;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 S. Peng, Y. Li, L. Wu, J. Zhong, Z. Weng, L. Zheng, Z. Yang, and J.-T. Miao, " 3D Printing Mechanically Robust and Transparent Polyurethane Elastomers for Stretchable Electronic Sensors", ACS Appl. Mater. Interfaces, Vol. 12, No. 5, pp. 6479-6488, 2020.   DOI
2 Q. Mu, L. Wang, C.-K. Dunn, X. Kuang, F. Duan, Z. Zhang, H. J. Qi, and T. Wang, "Digital light processing 3D printing of conductive complex structures", Addit. Manuf., Vol. 18, pp. 74-83, 2017.
3 X.-Y. Yin, Y. Zhang, X. Cai, Q. Guo, J. Yang, and Z. L. Wang, "3D printing of ionic conductors for high-sensitivity wearable sensors", Mater. Horiz., Vol. 6, No. 4, pp. 767-780, 2019.   DOI
4 J. Zhang, S. B. Ye, H. L. Liu, X. L. Chen, X. M. Chen, B. T. Li, W. H. Tang, Q. C. Meng, P. Ding, H. M. Tian, X. M. Li, Y. F. Zhang, P. J. Xu, and J. Y. Shao, "3D printed piezoelectric BNNTs nanocomposites with tunable interface and microarchitectures for self-powered conformal sensors", Nano Energy, Vol. 77, p. 105300, 2020.   DOI
5 X. J. Li, Y. Yang, B. S. Xie, M. Chu, H. F. Sun, S. Y. Hao, Y. Y. Chen, and Y. Chen, "3D Printing of Flexible Liquid Sensor Based on Swelling Behavior of Hydrogel with Carbon Nanotubes", Adv. Mater. Technol., Vol. 4, No. 2, p. 1800476, 2019.   DOI
6 X. Y. Sui, J. R. Downing, M. C. Hersam, and J. H. Chen, "Additive manufacturing and applications of nanomaterial-based sensors", Mater. Today, Vol. 48, pp.135-154, 2021.   DOI
7 L. J. Y. Tan, W. Zhu, and K. Zhou, "Recent Progress on Polymer Materials for Additive Manufacturing", Adv. Funct. Mater., Vol. 30, No. 43, p. 2003062, 2020.   DOI
8 J. Zhang, N. Amini, D. A. V. Morton, and K. P. Hapgood, "3D printing with particles as feedstock materials", Adv. Powder Technol., Vol. 32, No. 9, pp. 3324-3345, 2021.   DOI
9 W. Y. Zhao, Z. Y. Wang, J. P. Zhang, X. P. Wang, Y. T. Xu, N. Ding, and Z. C. Peng, "Vat Photopolymerization 3D Printing of Advanced Soft Sensors and Actuators: From Architecture to Function", Adv. Mater. Technol., Vol. 6, No. 8, p. 2001218, 2021.   DOI
10 D. Waller, T. Iqbal, and A. Safari, "Poling of Lead Zirconate Titanate Ceramics and Flexible Piezoelectric Composites by the Corona Discharge Technique", J. Am. Ceram. Soc., Vol. 72, No. 2, pp. 322-324, 1989.   DOI
11 T. Kim and I. Park, "Skin-interfaced Wearable Biosensors: A Mini-Review", J. Sens. Sci. Technol., Vol. 31, No. 2, pp. 71-78, 2022.   DOI
12 K. Kim, W. Zhu, X. Qu, C. Aaronson, W. R. McCall, S. C. Chen, and D. J. Sirbuly, "3D Optical Printing of Piezoelectric Nanoparticle - Polymer Composite Materials", ACS Nano, Vol. 8, No. 10, pp. 9799-9806, 2014.   DOI
13 R. Hensleigh, H. C. Cui, Z. P. Xu, J. Massman, D. S. Yao, J. Berrigan, and X. Y. Zheng, "Charge-programmed three-dimensional printing for multi-material electronic devices", Nat. Electron, Vol. 3, No. 4, pp. 216-224, 2020.   DOI
14 H. Kim, L. C. D. Manriquez, M. T. Islam, L. A. Chavez, J. E. Regis, M. A. Ahsan, J. C. Noveron, T. L. B. Tseng, and Y. R. Lin, "3D printing of polyvinylidene fluoride/photopolymer resin blends for piezoelectric pressure sensing application using the stereolithography technique", MRS Commun., Vol. 9, No. 3, pp. 1115-1123, 2019.   DOI
15 K. Yu, A. Xin, H. Du, Y. Li, and Q. Wang, " Additive manufacturing of self-healing elastomers", NPG Asia Mater., Vol. 11, No. 1, pp. 1-11, 2019.   DOI
16 X. F. Chen, H. O. T. Ware, E. Baker, W. S. Chu, J. M. Hu, and C. Sun, "The development of an all-polymer-based piezoelectric photocurable resin for additive manufacturing", Procedia CIRP, Vol. 65, pp. 157-162, 2017.   DOI
17 Y. Jung and H. Cho, "Flexible Pressure Sensors Based on Three-dimensional Structure for High Sensitivity", J. Sens. Sci. Technol., Vol. 31, No. 3, pp. 145-150, 2022.   DOI
18 X. R. Zhou, K. Parida, O. Halevi, S. Magdassi, and P. S. Lee, "All 3D Printed Stretchable Piezoelectric Nanogenerator for Self-Powered Sensor Application", Sensors, Vol. 20, No. 23, p. 6748, 2020.   DOI
19 K. K. Sappati and S. Bhadra, "Piezoelectric Polymer and Paper Substrates: A Review", Sensors, Vol. 18, No. 11, p. 3605, 2018.   DOI
20 S. A. Brinckmann, N. Patra, J. Yao, T. H. Ware, C. P. Frick, and R. S. Fertig III, "Stereolithography of SiOC polymerderived ceramics filled with SiC micronwhiskers", Adv. Eng. Mater., Vol. 20, No. 11, p. 1800593, 2018.   DOI
21 Y. Wang, L. Zhu, and C. Du, "Progress in Piezoelectric Nanogenerators Based on PVDF Composite Films", Micromachines, Vol. 12, No. 11, p. 1278, 2021.   DOI
22 E. R. Cholleti, "A Review on 3D printing of piezoelectric materials" IOP Conf. Ser.: Mater. Sci. Eng., Vol. 455, No. 1, p. 012046, 2018.   DOI
23 Y. W. Shao, Y. L. Zhao, M. J. Liu, Q. Zhang, and C. Q. Liu, "Flexible Force Sensor with Micro-pyramid Arrays Based on 3D Printing", 2018 IEEE Sens., pp. 1-4, 2018.
24 S. Hasan, A. Z. Kouzani, S. Adams, J. Long, and M. A. P. Mahmud, "Recent progress in hydrogel-based sensors and energy harvesters", Sens. Actuator A Phys., Vol. 335, p. 113382, 2022.   DOI
25 S. Bodkhe and P. Ermanni, "Challenges in 3D printing of piezoelectric materials", Multifunct. Mater., Vol. 2, No. 2, p. 022001, 2019.   DOI
26 W. C. Chen, F. F. Wang, K. Yan, Y. H. Zhang, and D. W. Wu, "Micro-stereolithography of KNN-based lead-free piezoceramics", Ceram. Int., Vol. 45, No. 4, pp. 4880-4885, 2019.   DOI
27 R. P. Chaudhary, C. Parameswaran, M. Idrees, A. S. Rasaki, C. Y. Liu, Z. W. Chen, and P. Colombo, "Additive manufacturing of polymer-derived ceramics: Materials, technologies, properties and potential applications", Prog. Mater. Sci., Vol. 128, p. 100969, 2022.   DOI
28 D. S. Yao, H. C. Cui, R. Hensleigh, P. Smith, S. Alford, D. Bernero, S. Bush, K. Mann, H. F. Wu, M. Chin-Nieh, G. Youmans, and X. Y. Zheng, "Achieving the Upper Bound of Piezoelectric Response in Tunable, Wearable 3D Printed Nanocomposites", Adv. Funct. Mater., Vol. 29, No. 42, p.1903866, 2019.   DOI
29 N. Rubab and S.-W. Kim, "Triboelectric Nanogenerators for Self-powered Sensors", J. Sens. Sci. Technol., Vol. 31, No. 2, pp. 79-84, 2022.   DOI
30 H. Park, J. Kim, and J.-H. Lee, "Triboelectrification based Multifunctional Tactile Sensors", J. Sens. Sci. Technol., Vol. 31, No. 3, pp. 139-144, 2022.   DOI
31 Z. C. Eckel, C. Zhou, J. H. Martin, A. J. Jacobsen, W. B. Carter, and T. A. Schaedler, "Additive manufacturing of polymer-derived ceramics", Science, Vol. 351, No. 6268, pp. 58-62, 2016.   DOI
32 Z. Chen, Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, and Y. He, "3D printing of ceramics: A review", J. Eur. Ceram. Soc., Vol. 39, No. 4, pp. 661-689, 2019.   DOI
33 Y. Huang, X. Y. Fan, S. C. Chen, and N. Zhao, "Emerging Technologies of Flexible Pressure Sensors: Materials, Modeling, Devices, and Manufacturing", Adv. Funct. Mater., Vol. 29, No. 12, p. 1808509, 2019.   DOI
34 Q. Ge, Z. Chen, J. X. Cheng, B. Zhang, Y. F. Zhang, H.G. Li, X. N. He, C. Yuan, J. Liu, S. Magdassi, and S. X. Qu, "3D printing of highly stretchable hydrogel with diverse UV curable polymers", Sci. Adv., Vol. 7, No. 2, p. eaba4261, 2021.   DOI
35 H. C. Cui, R. Hensleigh, D. S. Yao, D. Maurya, P. Kumar, M. G. Kang, S. Priya, and X. Y. Zheng, "Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response", Nat. Mater., Vol. 18, No. 3, pp. 234-241, 2019.   DOI
36 T. A. Duong, H. T. K. Nguyen, S.-S. Lee, C. W. Ahn, B. W. Kim, J. S. Lee, and H. S. Han, "Enhancement of electromechanical properties in lead-free (1-x)K0.5Na0.5O3-xBaZrO3 piezoceramics", J. Sens. Sci. Technol., Vol. 30, No. 6, pp. 408-414, 2022.