• 제목/요약/키워드: piezoelectric impedance

검색결과 201건 처리시간 0.034초

Inversion of Material Coefficients for Numerical Analysis of Piezoelectric Actuators Using a Three-Dimensional Finite Element Method

  • Joo, Hyun-Woo;Lee, Chang-Hwan;Park, Jong-Seok;Jung, Hyun-Kyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제3B권2호
    • /
    • pp.67-73
    • /
    • 2003
  • In this paper, the impedance of a piezoelectric transducer is calculated using the three-dimensional finite element method. The validity of numerical routine is confirmed experimentally. Using this numerical routine, the effects of material coefficients on piezoelectric actuators characteristics are analyzed. The material constants, which make significant effects, are selected and the relations between material constants are studied. Using these processes, three variables of material constants for a piezoelectric transducer are selected and the design sensitivity method is adopted as an inversion scheme. The validity of the inversion scheme for a piezoelectric transducer is confirmed by applying the proposed method to the sample piezoelectric transducer.

압전형 AFM 외팔보의 동적거동 해석 (Analysis of Dynamic Behavior of Piezoelectric Atomic Force Microscope Cantilever)

  • 하성규;박성균;김영호
    • 한국소음진동공학회논문집
    • /
    • 제12권3호
    • /
    • pp.187-194
    • /
    • 2002
  • A seven-port impedance and admittance matrices of multilayered piezoelectric beam are derived for the analysis of piezoelectric AFM ( atomic force microscope) cantilever that is partially covered by the piezoelectric layer. The variational principle is used for deriving the extensional and flexural motional equations and the conjugate parameters. Overall impedance matrix of AFM cantilever can be obtained by combining two impedance matrices of the covered and the non-covered. she resonance and antiresonance frequencies and the effective electromechanical coupling factors are calculated using the derived matrices. The results and the three dimensional finite element solutions are compared with the experimental results in other publication.

부임피던스 변환회로를 이용한 두께 모드 압전 진동자의 특성제어 (Characteristics Control of a Thickness Mode Piezoelectric Vibrator Using a Negative Impedance Converter Circuit)

  • 황성필;김무준;하강열
    • 한국음향학회지
    • /
    • 제21권7호
    • /
    • pp.600-605
    • /
    • 2002
  • 본 연구에서는 두께 모드 압전 진동자의 특성제어 부임피던스 변환 (NIC) 회로를 적용하였다. 두 개의 두께 모드 압전 진동자를 적층한 후, NIC 회로를 적용하여 입력 어드미턴스와 전기기계 변환효율을 측정한 결과를 시뮬레이션 결과와 비교하였다. 그 결과 NIC 회로에서 구현되는 부저항의 값에 따라 압전 진동자의 품질계수 및 전기음향 변환효율이 제어되었으며 NIC 회로를 적용한 경우에 품질계수는 약 20배, 전기음향 변환효율은 약 2.5배 정도 향상됨을 확인하였다.

Design Analysis of Step-down Multilayer Piezoelectric Transformer

  • Hoonbum Shin;Hyungkeun Ahn;Han, Deuk-Young
    • Journal of Power Electronics
    • /
    • 제3권2호
    • /
    • pp.139-144
    • /
    • 2003
  • In this paper, 11 and 13 layered step-down piezoelectric transformers were fabricated and their electrical characteristics have been analyzed for AC-adapter. When the voltage is applied to the driving piezoelectric vibrator polarized in the longitudinal direction, the output voltage is generated at the generating piezoelectric vibrator polarized in the thickness direction due to the piezoelectric effects. From the piezoelectric direct and converse effects, symbolic expressions between the electric inputs and outputs of the step-down piezoelectric transformer are derived with an equivalent circuit model. With those expressions, load and frequency characteristics are discussed through the simulations. Output voltage and current from a 11-layered and a 13-layered piezoelectric transformers were measured under the different load and frequency conditions. First we measured resonant frequency from impedance curve and got equivalent impedance value of the piezoelectric transformer from admittance plot. It was shown from experiments that output voltage increase s and resonant frequency changes according to the various resistor loads. Output current decreases inversely proportional to the change of loads. Moreover, the measured output voltage and current are well matched with the simulated results obtained from the proposed equivalent circuit model. Furthermore, a new step-down piezoelectric transformer has been suggested to Increase the output power based on a simulation result having a driving piezoelectric vibrator polarized thickness direction.

Impedance-Based Damage Diagnosis on Bolt-Jointed Structure Under Varying Temperature

  • Shim, Hyo-Jin;Min, Ji-Young;Yun, Chung-Bang;Shin, Sung-Woo
    • 비파괴검사학회지
    • /
    • 제31권3호
    • /
    • pp.260-270
    • /
    • 2011
  • The electromechanical impedance(E/M)-based method detects local structural damages based on variations of electrical impedance signatures which are obtained from piezoelectric sensors bonded to the structure and excited in high frequency band. In this method, temperature changes may result in significant impedance variations and lead to erroneous diagnostic results of the structure. To tackle this problem, a new technique providing a 2-dimensional damage feature related to the temperature information is proposed to distinguish the structural damage from the undesirable temperature variation. For experimental tests to validate the proposed method, damages are introduced by bolt loosening to a bolt-jointed steel beam, and impedance signals are measured under varying temperature conditions through a piezoelectric sensor attached on the beam. A freely suspended piezoelectric sensor is additionally utilized to obtain temperature information indirectly from resistance signatures. From a relationship between the damage index (from a constrained sensor) and the temperature (from a freely suspended sensor or a temperature sensor), damages can be detected more clearly under varying temperature compared to other conventional approaches.

Crack detection in rectangular plate by electromechanical impedance method: modeling and experiment

  • Rajabi, Mehdi;Shamshirsaz, Mahnaz;Naraghi, Mahyar
    • Smart Structures and Systems
    • /
    • 제19권4호
    • /
    • pp.361-369
    • /
    • 2017
  • Electromechanical impedance method as an efficient tool in Structural Health Monitoring (SHM) utilizes the electromechanical impedance of piezoelectric materials which is directly related to the mechanical impedance of the host structure and will be affected by damages. In this paper, electromechanical impedance of piezoelectric patches attached to simply support rectangular plate is determined theoretically and experimentally in order to detect damage. A pairs of piezoelectric wafer active sensor (PWAS) patches are used on top and bottom of an aluminum plate to generate pure bending. The analytical model and experiments are carried out both for undamaged and damaged plates. To validate theoretical models, the electromechanical impedances of PWAS for undamaged and damaged plate using theoretical models are compared with those obtained experimentally. Both theoretical and experimental results demonstrate that by crack generation and intensifying this crack, natural frequency of structure decreases. Finally, in order to evaluate damage severity, damage metrics such as Root Mean Square Deviation (RMSD), Mean Absolute Percentage Deviation (MAPD), and Correlation Coefficient Deviation (CCD) are used based on experimental results. The results show that generation of crack and crack depth increasing can be detectable by CCD.

Development of a low-cost multifunctional wireless impedance sensor node

  • Min, Jiyoung;Park, Seunghee;Yun, Chung-Bang;Song, Byunghun
    • Smart Structures and Systems
    • /
    • 제6권5_6호
    • /
    • pp.689-709
    • /
    • 2010
  • In this paper, a low cost, low power but multifunctional wireless sensor node is presented for the impedance-based SHM using piezoelectric sensors. Firstly, a miniaturized impedance measuring chip device is utilized for low cost and low power structural excitation/sensing. Then, structural damage detection/sensor self-diagnosis algorithms are embedded on the on-board microcontroller. This sensor node uses the power harvested from the solar energy to measure and analyze the impedance data. Simultaneously it monitors temperature on the structure near the piezoelectric sensor and battery power consumption. The wireless sensor node is based on the TinyOS platform for operation, and users can take MATLAB$^{(R)}$ interface for the control of the sensor node through serial communication. In order to validate the performance of this multifunctional wireless impedance sensor node, a series of experimental studies have been carried out for detecting loose bolts and crack damages on lab-scale steel structural members as well as on real steel bridge and building structures. It has been found that the proposed sensor nodes can be effectively used for local wireless health monitoring of structural components and for constructing a low-cost and multifunctional SHM system as "place and forget" wireless sensors.

압전 션트를 이용한 패널의 다중 모드 소음 저감에 관한 연구 (Multi-mode noise reduction of using piezoelectric shunt damping smart panels)

  • Kim, Joon-Hyoung;Kim, Jaehwan
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.327.2-327
    • /
    • 2002
  • In this paper, the transmitted noise reduction of smart panels of which passive piezoelectric shunt damping is used, is experimentally studied. Shunt damping experiments are based on the measured electrical impedance model. A passive shunt circuit composed of inductor, and load resistor is devised to dissipate the maximum energy into the joule heat energy For multi mode shunt damping, the shunt circuit is redesigned by adding a blocking circuit. (omitted)

  • PDF

온도 영향을 받는 보 구조물의 EMI 기반 손상 검색 (Electro Mechanical Impedance Based Damage Detection in Beams with Temperature Effect)

  • 이병준;김정태;류연선;나원배
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.184-187
    • /
    • 2005
  • Physical changes in a structural system may cause changes in mechanical impedance of the system. Due to the electro-mechanical coupling effect in piezoelectric materials, this change can be monitoring by the electrical impedance of the piezoelectric sensor. In this paper, the variability of electro-mechanical impedance caused by temperature effect is assessed to adjust impedance data used for EMI based damage detection in beams. First experiments on beams are described. Next, experiments were performed under the temperature varying condition, in the range of $3^{\circ}C\;to\;23^{\circ}C$. Finally, the relationship between temperatures and impedance signatures is analyzed empirically temperature-frequency patten for the test structure.

  • PDF

Analysis of Appropriate Parameters for Piezoelectric Ceramic Utilization by Using BVD Model

  • Jeerapan, Chalermchai;Sriratana, Witsarut;Julsereewong, Prasit;Kummool, Sart
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2067-2070
    • /
    • 2005
  • This paper presents an approach to evaluate the appropriate parameters for Piezoelectric ceramic utilization by adopting Impedance Method. Butterworth Van Dyke model (BVD) is considered to use as an equivalent circuit of Piezoelectric ceramic in case of no load. The experimental results from this model will be compared with the results from a circular Piezoelectric ceramic with 4.8 cm. diameter and 3 mm. thickness. The Thickness Mode vibration measured by Impedance Analyzer model 4192A can be analyzed from 1Hz to 13MHz for calculating and analyzing parameters at resonance frequency and anti-resonance frequency. These parameters are evaluated to design the efficient circuit for Piezoelectric ceramic utilization to obtain the optimal efficiency.

  • PDF