• Title/Summary/Keyword: piezoelectric effect

Search Result 647, Processing Time 0.034 seconds

Design and Analysis of Piezoelectric Energy Harvesting Device Using Waves (파도를 이용한 압전 에너지 수확 장치의 설계 및 해석)

  • Na, Yeong-min;Lee, Hyun-seok;Kang, Tae-hun;Park, Jong-kyu;Park, Tae-gone
    • Korean Journal of Materials Research
    • /
    • v.25 no.10
    • /
    • pp.523-530
    • /
    • 2015
  • Electricity generation through fossil fuels has caused environmental pollution. To solve this problem, research on new renewable energy (solar, wind, geothermal heat, etc.) to replace fossil fuels is in progress. These devices are able to consistently generate power. However, they have many drawbacks, such as high installation costs and limitations in possible set-up environments. Thus, piezoelectric harvesting technology, which is able to overcome the limitations of existing energy technologies, is actively being studied. Piezoelectric harvesting technology uses the piezoelectric effect which occurs in crystals that generate voltage when stress is applied. Therefore, it has advantages such as a wider installation base and lower technological cost. In this study, a piezoelectric energy harvesting device based on constant wave motion was investigated. This device can regenerate electricity in a constant turbulent flow in the middle of the sea. The components of the device are circuitry, a steel bar, an bimorph piezoelectric element and buoyancy elements. In addition, a multiphysical analysis coupled with the structure and piezoelectric elements was conducted to estimate the performance of the device. With this piezoelectric energy harvesting device, the displacement and electric power were analyzed.

Effect of Dimension Control of Piezoelectric Layer on the Performance of Magnetoelectric Laminate Composite

  • Cho, Kyung-Hoon
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.611-614
    • /
    • 2018
  • Laminate composites composed of $0.95Pb(Zr_{0.52}Ti_{0.48})O_3-0.05Pb(Mn_{1/3}Sb_{2/3})O_3$ piezoelectric ceramic and Fe-Si-B based magnetostrictive amorphous alloy are fabricated, and the effect of control of the areal dimensions and the thickness of the piezoelectric layer on the magnetoelectric(ME) properties of the laminate composites is studied. As the aspect ratio of the piezoelectric layer and the magnetostrictive layer increases, the maximum value of the ME voltage coefficient(${\alpha}_{ME}$) increases and the intensity of the DC magnetic field at which the maximum ${\alpha}_{ME}$ value appears decreases. Moreover, as the thickness of the piezoelectric layer decreases, ${\alpha}_{ME}$ tends to increase. The ME composites exhibit ${\alpha}_{ME}$ values higher than $1Vcm^{-1}Oe^{-1}$ even at the non-resonance frequency of 1 kHz. This study shows that, apart from the inherent characteristics of the piezoelectric composition, small thicknesses and high aspect ratios of the piezoelectric layer are important dimensional determinants for achieving high ME performance of the piezoelectric-magnetostrictive laminate composite.

Flexoelectric effects on dynamic response characteristics of nonlocal piezoelectric material beam

  • Kunbar, Laith A. Hassan;Alkadhimi, Basim Mohamed;Radhi, Hussein Sultan;Faleh, Nadhim M.
    • Advances in materials Research
    • /
    • v.8 no.4
    • /
    • pp.259-274
    • /
    • 2019
  • Flexoelectric effect has a major role on mechanical responses of piezoelectric materials when their dimensions become submicron. Applying differential quadrature (DQ) method, the present article studies dynamic characteristics of a small scale beam made of piezoelectric material considering flexoelectric effect. In order to capture scale-dependency of such piezoelectric beams, nonlocal elasticity theory is utilized and also surface effects are included for better structural modeling. Governing equations have been derived by utilizing Hamilton's rule with the assumption that the scale-dependent beam is subjected to thermal environment leading to uniform temperature variation across the thickness. Obtained results based on DQ method are in good agreement with previous data on pizo-flexoelectric beams. Finally, it would be indicated that dynamic response characteristics and vibration frequencies of the nano-size beam depends on the existence of flexoelectric influence and the magnitude of scale factors.

Poisson Effect on Electromechanical Impedance of Unconstrained Piezoelectric Patch

  • Shin, Sung-Woo;Kwon, Oh-Heon
    • International Journal of Safety
    • /
    • v.8 no.2
    • /
    • pp.26-30
    • /
    • 2009
  • In this study, the Poisson effect on resonant frequency behaviors of the unconstrained piezoelectric patch is investigated. The electromechanical impedance models for the un-bonded patch are derived from the two existing bonded patch models and numerical analysis for a given piezoelectric material is performed. From the analysis, it is found that the Poisson effect is not important as long as the electromechanical impedance model is used to predict the locations of resonant frequencies. However, Poisson effect should be considered when predicting the location of the largest resonant frequency of the patch since the amplitude responses are different with the model used.

Effect of Sintering Time on the Piezoelectric Properties of (Na,K,Li)(Nb,Sb,Ta)O3 Ceramics ((Na,K,Li)(Nb,Sb,Ta)O3계 세라믹스의 소성시간이 압전특성에 미치는 영향)

  • Kim, Seung-Won;Yoo, Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.4
    • /
    • pp.218-222
    • /
    • 2017
  • In this paper, in order to develop excellent composition ceramics for a piezoelectric energy- harvesting device, we synthesized $0.99(Na_{0.52}\;K_{0.443}\;Li_{0.037})(Nb_{0.883}\;Sb_{0.08}\;Ta_{0.037})O_3$ + $0.01(Sr_{0.95}Ca_{0.05})TiO_3$ + $0.3\;wt%\;Bi_2O_3\;+\;0.3\;wt%\;Fe_2O_3\;+\;0.3\;wt%\;CuO$ (abbreviated as NKN-SCT) ceramics with different sintering times, using the ordinary solid-state reaction method. The effect of sintering time on the microstructure and piezoelectric properties was investigated. The ceramics with the sintering time of 7 h have the optimum values of the piezoelectric constant ($d_{33}$), piezoelectric voltage constant ($g_{33}$), planar piezoelectric coupling coefficient (kp), mechanical quality factor (Qm), and dielectric constant (${\varepsilon}r$): $d_{33}=314[pC/N]$, $g_{33}=20.07[10^{-3}mV/N]$, kp = 0.442, Qm = 93, ${\varepsilon}r=1,768$, all being suitable for a piezoelectric energy-harvesting device.

Unified solutions for piezoelectric bilayer cantilevers and solution modifications

  • Wang, Xianfeng;Shi, Zhifei
    • Smart Structures and Systems
    • /
    • v.16 no.5
    • /
    • pp.759-780
    • /
    • 2015
  • Based on the theory of piezoelasticity, the static performance of a piezoelectric bilayer cantilever fully covered with electrodes on the upper and lower surfaces is studied. Three models are considered, i.e., the sensor model, the driving displacement model and the blocking force model. By establishing suitable boundary conditions and proposing an appropriate Airy stress function, the exact solutions for piezoelectric bilayer cantilevers are obtained, and the effect of ambient thermal excitation is taken into account. Since the layer thicknesses and material parameters are distinguished in different layers, this paper gives unified solutions for composite piezoelectric bilayer cantilevers including piezoelectric bimorph and piezoelectric heterogeneous bimorph, etc. For some special cases, the simplifications of the present results are compared with other solutions given by other researches based on one-dimensional constitutive equations, and some amendments have been found. The present investigation shows: (1) for a PZT-4 piezoelectric bimorph, the amendments of tip deflections induced by an end shear force, an end moment or an external voltage are about 19.59%, 23.72% and 7.21%, respectively; (2) for a PZT-4-Al piezoelectric heterogeneous bimorph with constant layer thicknesses, the amendments of tip deflections induced by an end shear force, an end moment or an external voltage are 9.85%, 11.78% and 4.07%, respectively, and the amendments of the electrode charges induced by an end shear force or an end moment are both 1.04%; (3) for a PZT-4-Al piezoelectric heterogeneous bimorph with different layer thicknesses, the maximum amendment of tip deflection approaches 23.72%, and the maximum amendment of electrode charge approaches 31.09%. The present solutions can be used to optimize bilayer devices, and the Airy stress function can be used to study other piezoelectric cantilevers including multi-layered piezoelectric cantilevers under corresponding loads.

Study on the Piezoelectric Direct Effect of PVDF Film (PVDF 필름의 압전정효과에 관한 연구)

  • 이용국;한득영
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.9
    • /
    • pp.786-790
    • /
    • 2000
  • This paper is concerned on the theoretical and experimental approaches of direct piezoelectric effect in the PVDF film. When a cantilever structure of PVDF film is bended by the external force, electric charges are concentrated on the electrode surface of the film due to the direct piezoelectric effect, and output voltage is induced from the terminals of the film. In this paper, a symbolic equation between the external force and the output voltage was introduced. Moreover, the theoretical output voltages were compared with the experimental results by falling balls, which were agreed well each other. This results can be useful in a warning system of abnormal pulse rate and breathing, and in detecting impact force and/or mechanical energy using bending of PVDF film.

  • PDF

The Piezoelectric Characteristics Depending on the GrainSize of the PT-PZ-PNN Ceramics (압전변압기용 PT-PZ-PNN 세라믹스의 그레인 크기에 따른 압전특성)

  • 박정호;김철수;김성곤;이상렬
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.10
    • /
    • pp.815-820
    • /
    • 2001
  • The piezoelectric properties of the PT-PZ-PNN system ceramics were investigated depending on the variati on of the grain size. The grain size was varied by sintering temperature, and additive. The effect of the grain size on the electrical, dielectric, and piezoelectric properties was studied with respect to the feasibility of the application for the piezoelectric transformer. Grain size increased as the PMW contents increased. The smaller the particle size used, the smaller the grain size obtained. Specimens are densily sintered. Dielectric and piezoelectric properties are not always improved in proportion to the grain sizes. When he particle size are fine and the grain size are increased properly with the optimum additives, the piezoelectric preperties have good values. the specimen sintered at 1200$\^{C}$ with PMW 2 mol% and MnO$\_$2/ 0.5wt% contents exhibited good piezoelectric properties for a piezoelectric transformer.

  • PDF

Analysis of the Failure Position in the Unimorph Cantilever for Energy Harvesting (에너지 하베스팅용 압전 캔틸레버의 위치에 따른 파단점 분석)

  • Kim, Hyung-Chan;Jeong, Dae-Yong;Yoon, Seok-Jin;Kim, Hyun-Jai
    • Korean Journal of Materials Research
    • /
    • v.17 no.2
    • /
    • pp.121-123
    • /
    • 2007
  • Energy harvesting from the vibration through the piezoelectric effect has been studied for powering the wireless sensor node. As piezoelectric unimorph cantilever structure can transfer low vibration to large displacement, this structure was commonly deployed to harvest electric energy from vibrations. Piezoelectric unimorph structure was composed of small stiff piezoelectric ceramic on the large flexible substrate. As there is the large Young's modulus difference between the flexible substrate and stiff piezoelectric ceramic, flexible substrate could not homogeneously transfer the vibration to stiff piezoelectric ceramic. As a result, most piezoelectric ceramics had been broken at the certain point. We measured and analyzed the stress distribution on the piezoelectric ceramic on the cantilever.

Finite Element Modeling for Free Vibration Control of Beam Structures using Piezoelectric Sensors and Actuators (압전감지기와 압전작동기를 이용한 보구조물의 자유진동제어에 대한 유한요소 모형화)

  • 송명관;한인선;김선훈;최창근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.2
    • /
    • pp.183-195
    • /
    • 2003
  • In this study, the method of the finite element modeling for free vibration control of beam-type smart structures with bonded plate-type piezoelectric sensors and actuators is proposed. Constitutive equations for the direct piezoelectric effect and converse piezoelectric effect of piezoelectric materials are considered. By using the variational principle, the equations of motion for the smart beam finite element are derived. The proposed 2-node beam finite element is an isoparametric element based on Timoshenko beam theory. Therefore, by analyzing beam-type smart structures with smart beam finite elements, it is possible to simulate the control of the structural behavior by applying voltages to piezoelectric actuators and monitoring of the structural behavior by sensing voltages of piezoelectric sensors. By using the smart beam finite element and constant-gain feed back control scheme, the formulation of the free nitration control for the beam structures with bonded plate-tyPe Piezoelectric sensors and actuators is proposed.