Browse > Article
http://dx.doi.org/10.4313/JKEM.2017.30.4.218

Effect of Sintering Time on the Piezoelectric Properties of (Na,K,Li)(Nb,Sb,Ta)O3 Ceramics  

Kim, Seung-Won (Department of Electrical Engineering, Semyung University)
Yoo, Ju-Hyun (Department of Electrical Engineering, Semyung University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.30, no.4, 2017 , pp. 218-222 More about this Journal
Abstract
In this paper, in order to develop excellent composition ceramics for a piezoelectric energy- harvesting device, we synthesized $0.99(Na_{0.52}\;K_{0.443}\;Li_{0.037})(Nb_{0.883}\;Sb_{0.08}\;Ta_{0.037})O_3$ + $0.01(Sr_{0.95}Ca_{0.05})TiO_3$ + $0.3\;wt%\;Bi_2O_3\;+\;0.3\;wt%\;Fe_2O_3\;+\;0.3\;wt%\;CuO$ (abbreviated as NKN-SCT) ceramics with different sintering times, using the ordinary solid-state reaction method. The effect of sintering time on the microstructure and piezoelectric properties was investigated. The ceramics with the sintering time of 7 h have the optimum values of the piezoelectric constant ($d_{33}$), piezoelectric voltage constant ($g_{33}$), planar piezoelectric coupling coefficient (kp), mechanical quality factor (Qm), and dielectric constant (${\varepsilon}r$): $d_{33}=314[pC/N]$, $g_{33}=20.07[10^{-3}mV/N]$, kp = 0.442, Qm = 93, ${\varepsilon}r=1,768$, all being suitable for a piezoelectric energy-harvesting device.
Keywords
NKN; Sintering time piezoelectric;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Chen, H. Fan, M. Zhang, C. Yang, and X. Chen, J. Alloys Compd., 492, 313 (2010). [DOI: http://dx.doi.org/10.1016/j.jallcom.2009.11.084]   DOI
2 C. Zhang, Z. Chen, W. J. Ji, L. Wang, Y. B. Chen, S. H. Yao, S. T. Zhang, and Y. F. Chen, J. Alloys Compd., 509, 2425 (2011). [DOI: http://dx.doi.org/10.1016/j.jallcom.2010.11.037]   DOI
3 F. Azough, M. Wegrzyn, R. Freer, S. Sharma, and D. Hall, J. Eur. Ceram. Soc., 31, 569 (2011). [DOI: http://dx.doi.org/10.1016/j.jeurceramsoc.2010.10.033]   DOI
4 R. Zuo, Z. Xu, and L. Li, J. Phys. Chem. Solids, 69, 1728 (2008). [DOI: http://dx.doi.org/10.1016/j.jpcs.2008.01.003]   DOI
5 B. H. Seo and J. H. Yoo, J. Korean Inst. Electr. Electron. Mater. Eng., 23, 617 (2010). [DOI: http://dx.doi.org/10.4313/JKEM.2010.23.8.617]
6 R. Zuo, C. Ye, and X. Fang, J. Phys. Chem. Solids, 69, 230 (2008). [DOI: http://dx.doi.org/10.1016/j.jpcs.2007.08.066]   DOI
7 Y. S. Kim, J. H. Yoo, J. I. Hong, and J. Y. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 26, 806 (2013). [DOI: http://dx.doi.org/10.4313/JKEM.2013.26.11.806]
8 R. Zuo, Z. Xu, and L. Li, J. Phys. Chem. Solids, 69, 1728 (2008). [DOI: http://dx.doi.org/10.1016/j.jpcs.2008.01.003]   DOI
9 Y. Zhao, Y. Zhao, R. Huang, R. Liu, and H. Zhou, Mater. Lett., 75, 146 (2012). [DOI: http://dx.doi.org/10.1016/j.matlet.2012.02.021]   DOI
10 X. Chao, Z. Yang, Z. Li, and Y. Li, J. Alloys Compd., 518, 1 (2012). [DOI: http://dx.doi.org/10.1016/j.jallcom.2011.11.104]   DOI
11 Y. Saito, H. Takao, T. Tani, T. Nonoama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Nature, 432, 84 (2004). [DOI: http://dx.doi.org/10.1038/nature03028]   DOI
12 H. Wang, J. Wu, X. Cheng, D. Xiao, and J. Zhu, J. Alloys Compd., 585, 748 (2014). [DOI: http://dx.doi.org/10.1016/j.jallcom.2013.10.016]   DOI
13 J. J. Zhou, J. F. Li, L. Q. Cheng, K. Wang, X. W. Zhang, and Q. M. Wamg, J. Eur. Ceram. Soc., 32, 3575 (2012). [DOI: http://dx.doi.org/10.1016/j.jeurceramsoc.2012.05.019]   DOI
14 J. Du, Z. Xu, B. Deng, R. Chu, X. Yi, L. Zheng, and Y. Li, Ceram. Int., 40, 4319 (2014). [DOI: http://dx.doi.org/10.1016/j.ceramint.2013.08.098]   DOI