• Title/Summary/Keyword: phytase

Search Result 211, Processing Time 0.169 seconds

Effect of Dietary Phytase on Growth Performance and Excreta Excretion of Broilers (사료내 Phytase 첨가가 육계의 생산성과 분뇨 배설량에 미치는 영향)

  • HwangBo, Jong;Hong, Eui-Chul;Kang, Bo-Seok;Kim, Hak-Kyu;Heo, Kang-Nyeong;Choo, Hyo-Jun;Kim, Won
    • Korean Journal of Poultry Science
    • /
    • v.38 no.4
    • /
    • pp.255-263
    • /
    • 2011
  • This work was conducted to investigate the effects of phytase on the growth performance, excreta excretion, and N and P excretion of broilers for 7 weeks. One hundred ninety two Ross broiler (one-day-old) with average weight $44.7{\pm}1.5$ g were assigned randomly to 4 treatments groups (12 birds/pen, 4 pens/treatment) as $2{\times}2$ complex factors of sex of broiler male, female) and phytase 2 treatments (0, 300 FTU/kg), and fed experimental diets for 6 weeks (starter, 0~2 wk; earlier, 2~4 wk; finisher, 4~7 wk). The experimental diets included that phytase was added to the basal diet. Body weight was high at male treatment and at phytase treatment. Feed intake was high at male treatment and was no difference between phytase and non-phytase treatment. Feed efficiency was the highest at male and phytase treatment. Manure excretion was high at male treatment and reduced at phytase treatment. Excretion of N and P was high at male treatment and at non-phytase treatment. Finally, when phyase was added to basal diet, the growth performance of broilers was improved and excreta excretion and N and P excretion of broilers were decreased.

The Effect of Dietary Phytase on Nitrogen and Phosphorus Excretion of Gestating and Lactating Sows (Phytase 첨가가 임신돈과 포유돈의 분뇨 배설량 및 질소와 인 배설량에 미치는 영향)

  • HwangBo, Jong;Hong, Eui-Chul
    • Journal of Animal Science and Technology
    • /
    • v.54 no.4
    • /
    • pp.291-297
    • /
    • 2012
  • This study was carried out to investigate the effect of dietary phytase on nitrogen and phosphorus excretion of gestating and lactating sows (Yorkshire ${\times}$ Landrace ${\times}$ Duroc). Twelve gestating sows and twelve lactating sows were used in this study and were divided into 2 groups (1 control group and 1 treatment group, 6 replications/group) the control group was without phytase and the treatment group was fed with phytase (750 FTU/kg) in the diet, respectively. Body weights of gestating and lactating sows were $208.9{\pm}13.8$ kg and $190.5{\pm}22.9$ kg, respectively. In gestating sows, feed intake was greater in phytase fed group than the control (P<0.05), but water intake and total excretion were not different between the groups. In lactating sows, feed and water intakes and total excretion were not different between the groups. The N intake of lactating sows was higher in phytase fed group than control (P<0.05) but N excretion ratio was not different. In lactating sows, N intake and excretion and N excretion ratio were not significantly different between the groups. P excretion and excretion ratio in gestating sows decreased by phytase treatment (P<0.05) as compared to control. In lactating sows, N intake and excretion was not significantly different by added phytase (P>0.05). Finally, dietary addition of phytase decreased P excretion in feces of gestating and lactating sows.

Phytase Properties from Bifidobacterium animalis

  • Oh, Nam-Soon;Lee, Byong-Hoon
    • Food Science and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.580-583
    • /
    • 2007
  • Phytase activity was examined with various bifidobacterial strains cultured statically in MRS broth at $37^{\circ}C$ for 48 hr. Seven Bifidobacterium species showed mostly an intracellular phytase activity, though their specific activities were very low. The highest specific activity was found in Bifidobacterium animalis B33 strain, among 7 bifidobacteria tested. The specific activity was highest during the exponential growth phase. Carbohydrates and the concentration of phosphorus sources had an effect on the phytase activity and bacterial growth. Glucose was the most favorable carbohydrate for the phytase activity. Phytate inhibited the cell growth, and phytase activity decreased with increase of phytate concentration. The phytase activity was even higher in the static microaerophilic growth than that in anaerobic state, despite the stimulated growth in anaerobic growth. The optimal pH ranges were comparatively broad, but the optimal temperatures were $50^{\circ}C$ for all tested strains. The phytase activity was most active at pH 6.5 and $50^{\circ}C$ for B. animalis B33 strain.

Progressive Screening of Thermostable Yeasts for Phytase Production

  • Ries, Edi Franciele;Macedo, Gabriela Alves
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.655-660
    • /
    • 2009
  • Biotechnological phytase preparations are commercially available and are currently used in animal feeding. However, thermostability constraints, low yields, and the high cost of the enzyme have limited its use. This study represents a new perspective for the food enzyme market. The research screened thermostable yeast strains for their ability to produce phytase. The screening was carried out with a gradual increase in temperature ($30-48^{\circ}C$). Sixteen strains (1 strain identified as Saccharomyces cerevisiae) maintained the ability to produce phytase at $48^{\circ}C$ and their phytase activity was confirmed using 2 phytase assay methodologies. The yeast strains tested in this study seem to be potential efficient producers of phytase, indicating a possible new source of thermostable phytase of commercial interest, particularly that from S. cerevisiae.

Evaluation of the impact of phytase supplementation on growth performance, nutrient digestibility, and fecal score of growing pigs

  • Shanshui Gao;Md Mortuza Hossain;In Ho Kim
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.653-661
    • /
    • 2023
  • Phytase enhances phosphorus availability in pig diets by breaking down phytic acid, which is challenging for animals to digest. This study aimed to assess the impact of dietary phytase supplementation on the growth performance, nutrient digestibility, and fecal score of growing pigs. Sixty-four growing pigs ([Yorkshire × Landrace] × Duroc, average body weight 21.20 ± 0.18 kg) were randomly assigned to one of two treatment groups. The dietary treatments were CON, basal diet, and PHY, basal diet + 0.0025% phytase. Results indicated a tendency for increased average daily gain in the phytase-supplemented diet group (p < 0.10) compared to the control diet group. The average daily feed intake and feed conversion ratio were not affected by the addition of 0.0025% phytase. Furthermore, dry matter digestibility, nitrogen content, and digestible energy were not influenced (p > 0.05) by phytase supplementation. Fecal score remained similar (p > 0.05) in growing pigs fed phytase-supplemented and control diets. These findings suggest that supplementing the diet of growing pigs with 0.0025% phytase may lead to improved average daily gain without adverse effects on nutrient digestibility and fecal score. This implies the potential to enhance growth performance without compromising overall health or digestion in pigs. Further investigations into the optimal levels of phytase supplementation for growing pigs are recommended.

Isolation of Enterobacter Cloacae Producing Phytase and Medium Optimization of Its Production (Phytase를 생산하는 Enterobacter cloacae의 분리 및 효소 생산의 배지 최적화)

  • 송민동;김영훈;양시용;김대영;김창원;정원형;권문남
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.2
    • /
    • pp.78-83
    • /
    • 2001
  • Phytase (myo-inositol hexakisphosphate phosphohydrolase: EC 3.1.3.8) hydrolyzes phytic acid (myo-inositol hexakisphosphate) to myo-inositol and monophosphates. In order to obtain phytase producing bacteria, many samples were collected from various soils. Among thirty-five phytase-producing strains, YH100 showed the highest phytase activity. In order to identify the selected YHlOO strain, the morphological and physiological characteristics were examined according to the method of Bergey's manual by 168 rRNA sequence, cellular fatty acids profile, O+C contents and physiological test using API 20E kit. The strain YH100 identified to be a genus of Enterobacter cloacae and was named as Enterobacter cloacae YHlOO. Optimum medium for the phytase production by the Entemhacter c!o([we YHlOO was composed of 2.0%(w/v) glucose, 1.0%(w/v) peptone, 1.0%(w/v) beef extract, 0.1 %(w/v) KCI. and 0.1 %( w/v) sodium phytate.

  • PDF

Effect of Phytase, Protease and the Mixed Enzyme of Phytase and Protease on the Extraction and Properteis of the Protein from Abolished Soybean Meal (Phytase, Protease 및 Phytase와 Protease 혼합 효소처리가 폐대두박의 단백질 추출율 및 그 기능성에 미치는 영향)

  • 조영제;천성숙
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.1
    • /
    • pp.57-63
    • /
    • 2000
  • To extract insoluble proteins from abolished soybean meal, the meal was treatesd with phytase and protease produced by Aspergillus sp. SM-15 and Aspergillus sp. MS-18. The extraction of insoluble soybean protein was increased at alkaline range more than pH 5 in case of phytase, pH 7 to 11 in case of protease and pH 5 to 12 in case of the mixed enzyme of phytase and protease. The optimum extraction temperature of insoluble protein was 5$0^{\circ}C$ for phytase and the mixed enzyme of phytase and protease, and 6$0^{\circ}C$ for protease. The optimum treatment time for extraction of protein was 9 hrs for phytase, 11 hrs for protease and the mixed enzyme of phytase and protease and optimum unit of enzyme for extraction of protein was 600 unit, 40 unit and 900 unit+60 unit in case of phytase, protease, phytase and protease, respectively. The treatment of mixed enzyme showed higher extracton rate of protein than single enzyme treatment. The foaming capacity, foaming stability, emulsion capacity, and emulsion stability of soybean meal protein by the treatment of the enzymes increased at all pH range. Further more oil absorption as well as water absorption capacities by the treatment of the enzymes were also increased. The functional properteis of the soybean meal protein treated by the mixed enzyme were higher than those of soybean meal protein treated by the single enzyme.

  • PDF

Response of broiler chickens to diets containing different levels of sodium with or without microbial phytase supplementation

  • Akter, Marjina;Graham, Hadden;Iji, Paul Ade
    • Journal of Animal Science and Technology
    • /
    • v.61 no.2
    • /
    • pp.87-97
    • /
    • 2019
  • Phytate induced excessive mineral excretion through poultry litter leads to poor performance and environmental pollution. Exogenous microbial phytase supplementation to poultry diets reduce the environmental excretion of nutrient and improve bird's performance. However, excessive dietary sodium (Na) level may hinder the phytase-mediated phytate hydrolysis and negate the beneficial effects of phytase. Therefore, this experiment was conducted to investigate the effects of different concentration dietary Na on phytase activity and subsequent impact on broiler performance, bone mineralisation and nutrient utilisation. In this study, six experimental diets, consisting of three different levels of Na (1.5, 2.5, or 3.5 g/kg) and two levels of microbial phytase (0 or 500 U/kg) were formulated by using $3{\times}2$ factorial design. The six experimental diets were offered to 360 day-old Ross 306 male chicks for 35 days, where, each experimental diet consisted of 6 replicates groups with 10 birds. Along with growth performance, nutrient utilization, intestinal enzyme activity, dry matter (DM) content of litter and mineral status in bone were analysed. Dietary Na and phytase had no effect on bode weight gain and feed intake. Birds on the low Na diet showed higher (p < 0.05) feed conversion ratio (FCR) than the mid-Na diets. High dietary Na adversely affected (p < 0.001) excreta DM content. Phytase supplementation to the high-Na diet increased (p < 0.01) the litter ammonia content. High dietary Na with phytase supplementation improved ($Na{\times}phytase$, p < 0.05) the AME value and ileal digestibility of Ca and Mg. The total tract retention of Ca, P, and Mg was reduced with high Na diet, which was counteracted by phytase supplementation ($Na{\times}phytase$, p < 0.001). The diets containing mid-level of Na improved (p < 0.001) the function of Na-K-ATPase and Mg-ATPase in the jejunum. The overall results indicate that high dietary Na did not affect phytase activity but influenced the nutrient utilization of birds, which was not reflected in bird overall performance.

Wheat phytase can alleviate the cellular toxic and inflammatory effects of lipopolysaccharide

  • An, Jeongmin;Cho, Jaiesoon
    • Journal of Animal Science and Technology
    • /
    • v.63 no.1
    • /
    • pp.114-124
    • /
    • 2021
  • The objective of this study was to characterize the enzymatic hydrolysis of lipopolysaccharide (LPS) by wheat phytase and to investigate the effects of wheat phytase-treated LPS on in vitro toxicity, cell viability and release of a pro-inflammatory cytokine, interleukin (IL)-8 by target cells compared with the intact LPS. The phosphatase activity of wheat phytase towards LPS was investigated in the presence or absence of inhibitors such as L-phenylalanine and L-homoarginine. In vitro toxicity of LPS hydrolyzed with wheat phytase in comparison to intact LPS was assessed. Cell viability in human aortic endothelial (HAE) cells exposed to LPS treated with wheat phytase in comparison to intact LPS was measured. The release of IL-8 in human intestinal epithelial cell line, HT-29 cells applied to LPS treated with wheat phytase in comparison to intact LPS was assayed. Wheat phytase hydrolyzed LPS, resulting in a significant release of inorganic phosphate for 1 h (p < 0.05). Furthermore, the degradation of LPS by wheat phytase was nearly unaffected by the addition of L-phenylalanine, the inhibitor of tissue-specific alkaline phosphatase or L-homoarginine, the inhibitor of tissue-non-specific alkaline phosphatase. Wheat phytase effectively reduced the in vitro toxicity of LPS, resulting in a retention of 63% and 54% of its initial toxicity after 1-3 h of the enzyme reaction, respectively (p < 0.05). Intact LPS decreased the cell viability of HAE cells. However, LPS dephosphorylated by wheat phytase counteracted the inhibitory effect on cell viability. LPS treated with wheat phytase decreased IL-8 secretion from intestinal epithelial cell line, HT-29 cell to 14% (p < 0.05) when compared with intact LPS. In conclusion, wheat phytase is a potential therapeutic candidate and prophylactic agent for control of infections induced by pathogenic Gram-negative bacteria and associated LPS-mediated inflammatory diseases in animal husbandry.

Wheat phytase potentially protects HT-29 cells from inflammatory nucleotides-induced cytotoxicity

  • Jeongmin An;Jaiesoon Cho
    • Animal Bioscience
    • /
    • v.36 no.10
    • /
    • pp.1604-1611
    • /
    • 2023
  • Objective: The aim of this study was to investigate the protective effect of wheat phytase as a structural decomposer of inflammatory nucleotides, extracellular adenosine triphosphate (ATP), and uridine diphosphate (UDP) on HT-29 cells. Methods: Phosphatase activities of wheat phytase against ATP and UDP was investigated in the presence or absence of inhibitors such as L-phenylalanine and L-homoarginine using a Pi Color Lock gold phosphate detection kit. Viability of HT-29 cells exposed to intact- or dephosphorylated-nucleotides was analyzed with an EZ-CYTOX kit. Secretion levels of pro-inflammatory cytokines (IL-6 and IL-8) in HT-29 cells exposed to substrate treated with or without wheat phytase were measured with enzyme-linked immunosorbent assay kits. Activation of caspase-3 in HT-29 cells treated with intact ATP or dephosphorylated-ATP was investigated using a colorimetric assay kit. Results: Wheat phytase dephosphorylated both nucleotides, ATP and UDP, in a dose-dependent manner. Regardless of the presence or absence of enzyme inhibitors (L-phenylalanine and L-homoarginine), wheat phytase dephosphorylated UDP. Only L-phenylalanine inhibited the dephosphorylation of ATP by wheat phytase. However, the level of inhibition was less than 10%. Wheat phytase significantly enhanced the viability of HT-29 cells against ATP- and UDP-induced cytotoxicity. Interleukin (IL)-8 released from HT-29 cells with nucleotides dephosphorylated by wheat phytase was higher than that released from HT-29 cells with intact nucleotides. Moreover, the release of IL-6 was strongly induced from HT-29 cells with UDP dephosphorylated by wheat phytase. HT-29 cells with ATP degraded by wheat phytase showed significantly (13%) lower activity of caspase-3 than HT-29 cells with intact ATP. Conclusion: Wheat phytase can be a candidate for veterinary medicine to prevent cell death in animals. In this context, wheat phytase beyond its nutritional aspects might be a novel and promising tool for promoting growth and function of intestinal epithelial cells under luminal ATP and UDP surge in the gut.