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Wheat phytase potentially protects HT-29 cells from  
inflammatory nucleotides-induced cytotoxicity

Jeongmin An1 and Jaiesoon Cho1,*

Objective: The aim of this study was to investigate the protective effect of wheat phytase as 
a structural decomposer of inflammatory nucleotides, extracellular adenosine triphosphate 
(ATP), and uridine diphosphate (UDP) on HT-29 cells.
Methods: Phosphatase activities of wheat phytase against ATP and UDP was investigated 
in the presence or absence of inhibitors such as L-phenylalanine and L-homoarginine using 
a Pi Color Lock gold phosphate detection kit. Viability of HT-29 cells exposed to intact- or 
dephosphorylated-nucleotides was analyzed with an EZ-CYTOX kit. Secretion levels of 
pro-inflammatory cytokines (IL-6 and IL-8) in HT-29 cells exposed to substrate treated 
with or without wheat phytase were measured with enzyme-linked immunosorbent assay 
kits. Activation of caspase-3 in HT-29 cells treated with intact ATP or dephosphorylated-
ATP was investigated using a colorimetric assay kit.
Results: Wheat phytase dephosphorylated both nucleotides, ATP and UDP, in a dose-
dependent manner. Regardless of the presence or absence of enzyme inhibitors (L-phenyl-
alanine and L-homoarginine), wheat phytase dephosphorylated UDP. Only L-phenylalanine 
inhibited the dephosphorylation of ATP by wheat phytase. However, the level of inhibition 
was less than 10%. Wheat phytase significantly enhanced the viability of HT-29 cells 
against ATP- and UDP-induced cytotoxicity. Interleukin (IL)-8 released from HT-29 
cells with nucleotides dephosphorylated by wheat phytase was higher than that released 
from HT-29 cells with intact nucleotides. Moreover, the release of IL-6 was strongly 
induced from HT-29 cells with UDP dephosphorylated by wheat phytase. HT-29 cells 
with ATP degraded by wheat phytase showed significantly (13%) lower activity of caspase-3 
than HT-29 cells with intact ATP. 
Conclusion: Wheat phytase can be a candidate for veterinary medicine to prevent cell 
death in animals. In this context, wheat phytase beyond its nutritional aspects might be a 
novel and promising tool for promoting growth and function of intestinal epithelial cells 
under luminal ATP and UDP surge in the gut.

Keywords: Cytotoxicity; HT-29 Cell; Inflammatory Nucleotides; Wheat Phytase

INTRODUCTION

Extracellular nucleotides such as adenosine triphosphate (ATP) and uridine diphosphate 
(UDP) are important biological molecules essential to all living organisms. They are critical 
components in both intracellular and extracellular signals [1]. In general, ATP plays an 
important role as an essential energy source for various biological mechanisms such as 
metabolism and respiration in enzymatic reactions of most organisms [2,3]. UDP, a key 
factor of glycogenesis, is a pyrimidine nucleotide intermediator that is crucial for de novo 
biosynthesis of nucleic acid [4]. These two nucleotides are found in almost all biological 
reactions, including immune responses [5,6]. 
 At first glance, ATP and UDP seem to only have positive effects on living organisms 
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based on roles of ATP and UDP mentioned above. However, 
extracellular nucleotides and their sugar conjugate forms such 
as UDP-glucose and UDP-galactose can also act as danger-
associated molecular patterns (DAMPs) secreted from incurred 
cells [7]. Specifically, extracellular ATP works as a DAMP in 
human cells when ATP levels exceed the capacity of extra-
cellular ATPases [8,9]. An increase in extracellular ATP 
might have been induced by bacterial infection as release 
of ATP has been reported during growth of Gram-negative 
and Gram-positive bacteria such as Acinetobacter junii, 
Pseudomonas aeruginosa, Klebsiella pneumoniae, Klebsiella 
oxytoca, and Staphylococcus aureus [3]. Ultimately, excessive 
increases of extracellular ATP and UDP during bacterial 
infection can induce caspase-dependent apoptosis that can 
destroy various animal cells including thymocytes, hepato-
cytes, microglial, myeloid cells, and hippocampal organotypic 
cells [10-12]. Previous studies have succeeded in elucidat-
ing immunologically detrimental aspects of extracellular 
ATP by demonstrating that extracellular ATP can induce 
apoptosis and neuronal dysfunction [13]. In addition, ac-
cording to previous studies [12,14], not only ATP but also 
uracil nucleotides (UTP and UDP) can induce apoptosis of 
astrocytes by inhibiting cell proliferation and increasing NO 
production in microglia. ATP is also needed for endotoxemia 
to trigger systemic inflammation [15]. Cauwels et al [15] 
have reported that removal of systemic extracellular ATP 
can dampen toxicity and damage in systemic inflammatory 
response syndrome in a murine model. Dephosphorylation 
of ATP can alleviate apoptosis, cellular disintegration, mito-
chondrial damage, and intestinal breakdown [11]. Likewise, 
degradation of extracellular nucleotides by enzymatic de-
phosphorylation may reduce their activity such as apoptosis 
induction and cell damage. However, direct effects of nu-
cleotides and enzymatically dephosphorylated nucleotides 
on animal cells have not been elucidated yet. 
 Wheat phytase is well known as a nutritional feed additive 
for improving phosphate availability of monogastric animals. 
It can also reduce phosphate pollution in livestock husbandry 
[16]. Interestingly, wheat phytase classified as multiple inositol 
polyphosphate phosphatase (MINPP) can hydrolyze ATP and 
non-specifically dephosphorylate p-nitrophenyl phosphate, 
2,3-bisphosphoglyceric acid (2,3-BPG), and diphospho-myo-
inositol pentakisphosphate (PP-InsP5) [16,17]. However, the 
progress of research on the enzymatic ability of wheat phytase 
to affect immunity and viability of living cells by dephos-
phorylating inflammatory nucleotides has been quite slow 
[6,18]. The aim of this study was to investigate the protective 
effect of wheat phytase as a structural decomposer of inflam-
matory nucleotides, extracellular ATP and UDP, on HT-29 
cells, an intestinal epithelial cell line. 

MATERIALS AND METHODS

Reagents and maintenance of cell culture
Nucleotides (ATP and UDP) and wheat phytase used in this 
study were purchased from Sigma-Aldrich (St. Louis, MO, 
USA). Wheat phytase was reconstituted in endotoxin-free 
water (Sigma-Aldrich, USA) and residual inorganic phos-
phate was removed through Pi-bond resin (Innova Biosciences, 
Cambridge, UK). A malachite green-based Pi Color Lock 
gold phosphate detection kit was procured from Innova Bio-
sciences (UK). L-phenylalanine and L-homoarginine as 
inhibitors of dephosphorylation, were procured from Sigma-
Aldrich (USA). For cell viability assay, an EZ-CYTOX kit 
was purchased from DogenBio (Seoul, Korea). Cymax human 
interleukin-6 (IL-6) and IL-8 enzyme-linked immunosorbent 
assay (ELISA) kits used for IL-6 and IL-8 secretion assay were 
obtained from Ab FRONTIER (Seoul, Korea). A caspase-3/
CPP32 colorimetric assay kit used to measure the activity of 
caspase-3, marker of programmed cell death, was sourced 
from BioVision (Milpitas, CA, USA). Human colorectal 
adenocarcinoma cell line, HT-29, was obtained from ATCC 
(Manassas, VA, USA). Cells were cultured in McCoy’s 5A 
medium purchased from Gibco Life technologies (Carlsbad, 
CA, USA). The medium was supplemented with 10% fetal 
bovine serum and 1% penicillin-streptomycin solution, 
both of which were purchased from Gibco Life technologies 
(USA). These cells were cultured at 37°C in a humidified 
air incubator with 5% CO2.

Dephosphorylation assay for nucleotides
The activity of wheat phytase as a phosphatase against ATP 
and UDP was determined at 37°C for 15 min. ATP or UDP 
(100 μΜ) was treated with different concentrations (0.0715, 
0.143, and 0.286 mU/mL) of wheat phytase in 50 mM sodium-
acetate buffer (pH 5.0). Phosphatase activities of wheat phytase 
(0.143 mU/mL) against ATP and UDP was measured with 
or without phosphatase inhibitors such as L-phenylalanine 
and L-homoarginine (10 mM). Amounts of free orthophos-
phate released from nucleotides were measured at optical 
density (OD) 635 nm using a Pi Color Lock gold kit (Innova 
Biosciences, UK) based on malachite green detection accord-
ing to the manufacturer’s instructions.

Cell-viability assay
HT-29 cells were seeded onto 96-well plates at a density of 
104 cells/well and cultured until confluency of each well 
reached 80%. Nucleotides (12 mM of ATP and UDP) were 
pretreated at 37°C for 1 h with or without wheat phytase 
(286 mU/mL) in distilled water (E-Toxate Water; Sigma-
Aldrich, USA). Then 10 μL of aliquot was taken from the 
reaction mixture and applied to cells in each well. After 24 h 
of incubation, 10 μL of EZ-CYTOX was used to treat cells 
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in each well. Cell viabilities were then measured at OD 450 
nm using the Synergy 2 microplate reader (BioTek, Winooski, 
VT, USA) according to the manufacturer’s instructions.

Interleukin-6 and -8 assay
This assay was started by seeding HT-29 cells (104 cells/well) 
onto 96-well plate. Cells were cultured until confluence of 
each well reached 80%. Samples used to measure IL-8 and 
IL-6 secretion from HT-29 cells were pretreated as follow: 
ATP (12 mM) or UDP (1 mM) was incubated with wheat 
phytase (1.43 U/mL) at 37°C for 1 h. Then, 10 μL of the reac-
tion mixture was added to HT-29 cells. After 24 h incubation, 
the cell culture medium containing IL-8 and IL-6 released 
from cells was analyzed with ELISA kits and OD 450 nm 
was measured according to the manufacturer’s protocols.

Caspase-3/CPP32 assay
First, HT-29 cells used for caspase-3/CPP32 assay were 
seeded onto 6-well plate at a density of 3×105 cells/well and 
cultured until cells covered 80% of each well. ATP (12 mM) 
was dephosphorylated by wheat phytase (286 mU/mL) at 
37°C for 1 h. Enzyme-treated ATP was then added to the 
plate containing HT-29 cells. After incubation for 24 h, OD 
405 nm of each sample was measured according to instruc-
tions provided by the Caspase-3/CPP32 colorimetric assay 
kit by the manufacturer.

Statistical analysis 
Statistical significance among and between groups was de-
termined by one-way analysis of variance using the general 
linear model function of SAS 9.4 (SAS Institute, Cary, NC, 
USA) followed by Duncan’s multiple range test and by Student’s 
t-test, respectively. Statistical significance is defined when p-
values are less than 0.05.

RESULTS

Dephosphorylation of ATP and UDP by wheat phytase
As shown in Figure 1(a) and 1(b), wheat phytase dephos-
phorylated both nucleotides, ATP and UDP, dose-dependently. 
The highest levels of free phosphate, 14.2 μM and 10.3 μM, 
were separated from ATP and UDP, respectively, at wheat 
phytase concentration of 0.286 mU/mL. Wheat phytase was 
more effective in dephosphorylating ATP than UDP. Dephos-
phorylation of UDP by wheat phytase was unaffected by L-
phenylalanine, a representative tissue-specific inhibitor, or 
L-homoarginine, a tissue-non-specific alkaline phosphatase 
inhibitor (Figure 2b). L-homoarginine did not affect the cat-
alytic property of wheat phytase to degrade ATP either (Figure 
2a). Although wheat phytase-induced degradation of ATP 
was inhibited by L-phenylalanine, the level of inhibition was 
less than 10%.

ATP- and UDP-induced cell death
Proinflammatory nucleotides ATP and UDP significantly 
induced death of HT-29 cells. As shown in Figure 3(a) and 
Figure 3(b), viabilities of HT-29 cells treated with ATP or 
UDP were 18% lower than a non-treated group. However, 
both figures (Figure 3a and 3b) showed the ability of wheat 
phytase to successfully increase the viability of substrate-
treated HT-29 cells. There was no significant difference in 
viability between the group in which enzyme-treated nucle-
otides were added to HT-29 cells and the group in which 
cells were not treated.

Effects of wheat phytase-treated ATP and UDP on IL-8 
and IL-6 release in HT-29 cells
HT-29 cells supplemented with enzyme-treated ATP showed 
increased secretion of IL-8 by approximately 152% com-
pared to cells supplemented with intact ATP (Figure 4a). As 
shown in Figure 4(b), IL-8 secreted from HT-29 cells treated 

Figure 1. Phosphatase activities of wheat phytase towards adeno-
sine triphosphate (ATP) (a) and uridine diphosphate (UDP) (b) using 
different amounts of enzyme. Data are expressed as mean and 
standard errors from three experiments. a-d Means lacking common 
superscripts differ significantly (p<0.05).
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with dephosphorylated-UDP was 1.6-fold higher than that 
secreted from cells treated with an intact substrate. In the 
case of IL-6 secretion from HT-29 cells, wheat phytase-treated 
UDP strongly increased the level of IL-6 secretion compared 
to intact UDP, with an increase of almost 14.5-fold (Figure 
5). 

Activation of caspase-3, a marker of apoptosis, 
alleviated by wheat phytase
Activation of caspase-3 stimulated by extracellular ATP was 
alleviated by wheat phytase (Figure 6). As a result, the level 
of caspase-3 in HT-29 cells treated with an intact ATP was 
increased 1.2-fold more than that in untreated control cells. 
When HT-29 cells were treated with dephosphorylated ATP, 
the activation level of caspase-3 was 13% lower than that in 
cells treated with pure ATP.

DISCUSSION

We aimed to investigate the protective effect of wheat phy-
tase as a structural decomposer of inflammatory nucleotides, 
extracellular ATP, and UDP on HT-29 cells in the present 
study. While physiologically normal concentration of plasma 

ATP is between 400 to 700 nM, intestinal luminal ATP con-
centration is relatively higher (1 to 10 mM) because ATP is 
secreted from intestinal necrotic cells and bacteria [2,19]. 
Luminal ATP levels are regulated by ecto-ATPase, an endog-
enous phosphatase in intestinal epithelial cells [20]. However, 
ecto-ATPase is known to be less efficient than intestinal al-
kaline phosphatase (IAP) in ATP hydrolysis. The function of 
IAP can be blocked under abnormal physiological conditions 
such as fasting [19]. When the concentration of extracellular 
ATP exceeds the capacity of ATPase, ATP starts to act as a 
DAMP [9]. Moreover, since ATP is required as an energy 
source during apoptosis, regulating ATP levels is important 
[11]. Indeed, recent studies have shown that ATP level is re-
lated to neuron dysfunction as ATP level can determine cell 
death mode of human leukemia cells (HL-60 cells) [8,13]. 
Thus, regulation of ATP levels is a critical factor in preventing 
cellular disintegration, apoptosis, intestinal barrier disrup-
tion, and even mortality [19]. Although ecto-ATPase and 
IAP in intestinal epithelial cells are known to contribute to 
lumen ATP regulation and reduction of inflammatory re-
sponses, respectively, associations between extracellular ATP 
and intestinal epithelial cells are unknown [20]. 
 Like ATP, uracil nucleotides (i.e., UTP and UDP) can 
inhibit cell proliferation and increase apoptosis of astrocyte 

Figure 2. Phosphatase activities of wheat phytase towards adeno-
sine triphosphate (ATP) (a) and uridine diphosphate (UDP) (b) in the 
presence of L-phenylalanine or L-homoarginine. I, intact substrate; II, 
enzyme treatment; III, enzyme treatment in the presence of L-pheny-
lalanine; IV, enzyme treatment in the presence of L-homoarginine. 
Data are expressed as mean and standard errors from three experi-
ments. a-c Means lacking common superscripts differ significantly 
(p<0.05).
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Figure 3. Viabilities of HT-29 cells exposed to adenosine triphos-
phate (ATP) (a) and uridine diphosphate (UDP) (b) hydrolyzed by 
wheat phytase. I, no addition; II, intact substrate; III, substrate treated 
with wheat phytase. Data are expressed as mean and standard er-
rors from three experiments. a,b Means lacking common superscripts 
differ significantly (p<0.05).
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[12,21]. Apoptosis is associated with the production of reac-
tive nitrogen species such as nitric oxide (NO). The production 
of NO is triggered by UDP converted from UTP [12,14,21]. 
In addition, uracil nucleotides conjugated to sugar such as 
UDP-glucose and UDP-galactose can act as DAMPs in cells 
[7]. Taken together, both ATP and UDP can induce apop-
tosis in certain environments and act as DAMPs [22]. In 
this respect, lowering levels of ATP and UDP through de-
phosphorylation might affect immune responses including 
proliferation and survival of intestinal epithelial cells.
 Interestingly, in this research, wheat phytase, a novel phy-
togenic phosphatase, acted as an effective ATP degrader in 
HT-29 cells just like IAP and ecto-ATPase. L-homoarginine, 
a tissue-non specific alkaline phosphatase inhibitor, did not 
inhibit phosphatase activity of wheat phytase at all. However, 
L-phenylalanine, a representative tissue-specific phosphatase 
inhibitor, inhibited wheat phytase, although the inhibition 
level was less than 10%. Extracellular ATP reduced cell via-
bility of HT-29 by about 20%, similarly to results obtained 
from a human cervical cancer cell line, SiHa [23]. However, 
dephosphorylation of extracellular ATP by wheat phytase 

significantly enhanced the cell viability of HT-29 and increased 
IL-8 release from HT-29 cells compared to intact ATP. This 
result shows that dephosphorylation of ATP by wheat phy-
tase can protect HT-29 cells from ATP-induced damage. 
Likewise, a previous study has reported that astrocytes could 
resist ATP-induced cell death because they have high rates 
of ATP hydrolysis under physiological conditions [11]. Elevated 
IL-6 or IL-8 secretion is associated with proliferation, angio-
genesis, and survival of many cancer cell lines [24-27]. It is 
mainly mediated by the activation of P2-purinergic recep-
tors such as G-protein-coupled receptors P2Y and ligand-
gated ion channels P2X [25]. Meanwhile, reactive hydrolysates 
such as ADP and adenosine after ATP digestion of wheat 
phytase can readily induce the expression of functional re-
ceptors in HT-29 cells. These receptors are implicated in cell 
growth, differentiation, and IL-8 secretion [24]. Similar to 
the study on human gastric carcinoma cells exposed to ATP 

Figure 4. Effects of adenosine triphosphate (ATP) (a) and uridine di-
phosphate (UDP) (b) hydrolyzed by wheat phytase on interleukin-8 
(IL-8) release from HT-29 cells. I, no addition; II, intact substrate, III, 
substrate treated with wheat phytase. Data are expressed as mean 
and standard errors from three experiments. a-c Means lacking com-
mon superscripts differ significantly (p<0.05).
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(b) Figure 5. Effect of uridine diphosphate (UDP) hydrolyzed by wheat 
phytase on interleukin-6 (IL-6) release from HT-29. I, intact substrate; 
II, substrate treated with wheat phytase. Data are expressed as mean 
and standard errors from three experiments (*** p<0.001; Student’s 
t-test).
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Figure 6. Caspase-3 activation in HT-29 cells exposed to adenosine 
triphosphate (ATP) hydrolyzed by wheat phytase. I, no addition; II, intact 
substrate; III, substrate treated with wheat phytase. Data are expressed 
as mean and standard errors from three experiments. a-c Means lacking 
common superscripts differ significantly (p<0.05).
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[13], this study also showed that the reduction in cell viability 
of HT-29 induced by extracellular ATP was associated with 
caspase-3 dependent apoptosis. As shown in results of the 
present study, HT-29 cells treated with wheat phytase- de-
graded ATP had 13% lower activity of caspase-3, a distinct 
death proteases frequently activated in apoptosis of mam-
malian cells, than cells treated with intact ATP. This indicates 
that dephosphorylation of ATP by wheat phytase could be a 
new strategy to enhance the viability of HT-29 cells and mit-
igate ATP-induced caspase-3-dependent apoptosis [11].
 Consistent with trends shown in other previous studies 
[14,28], UDP was dephosphorylated by wheat phytase in a 
dose-dependent manner in the present study. The dephos-
phorylation effect of the enzyme was maintained even when 
inhibitors such as L-phenylalanine and L-homoarginine 
were added. Wheat phytase restored the viability of HT-29 
cells through dephosphorylation of UDP. In other words, 
wheat phytase protected HT-29 cells from UDP-induced 
damage. Wheat phytase-treated UDP promoted the secre-
tion of cytokines, IL-6 and IL-8, from HT-29 cells. IL-6 and 
IL-8 are multifunctional cytokines that play central role in 
host protection due to their wide ranges of immune activities 
[29]. These results showed that wheat phytase could enhance 
cell viability of HT-29 against UDP-induced cytotoxicity by 
upregulating the release of both IL-6 and IL-8 known to be 
associated with proliferation and survival of many cells [24, 
25]. The present study also focuses on the possibility that 
wheat phytase may function as a direct up-regulator of IL-6 
or IL-8 expression like HSP60 (heat shock protein 60) to en-
hance the cell survival against ATP or UDP stimulus [27], 
which is a new approach different from our previous studies 
that the enzyme play a role in decreasing the IL-8 release for 
cell viability against phosphorylated substrates such as LPS 
(lipopolysaccharide) and inorganic polyphosphates, mainly 
derived from exogenous pathogenic bacteria [30,31].
 Until now, for improving gut health, studies have mainly 
focused on modulating the number and composition of in-
testinal microbiota using probiotics and prebiotics [32]. 
Considering that impairment and malfunction of intestinal 
epithelial cells can aggravate intestinal inflammation [33], 
intestinal epithelial cells are also key factors in maintaining a 
healthy relationship between intestinal microbiota and host 
immunity [33]. In a previous report, nucleotides increased 
apoptosis cells in the jejunum and ileum of weaned piglets 
[34]. Thus, protecting the viability of intestinal epithelial cells 
from extracellular nucleotides in the intestine has a great 
impact on overall productivity as well as intestinal health of 
living organisms in animal husbandry. In this study, ATP- 
and UDP-mediated death of intestinal epithelial cells was 
potentially alleviated by wheat phytase, implying that the 
enzyme could be a candidate for improving gut health in 
animals. Furthermore, this research proposes that wheat 

phytase can act as a bifunctional agent. It can be considered 
as a feed additive to improve the production performance. It 
can also be used as a candidate for veterinary medicine to 
prevent cell death in animals. In this context, wheat phytase 
beyond its nutritional aspects might be a novel and promis-
ing tool for promoting the growth and function of intestinal 
epithelial cells under luminal ATP and UDP surge in the 
gut. As a future study, it will be interesting to reveal how 
procaspase-3, the inactive precursor zymogen of caspase-3, 
may function as a regulator of  caspase-3 activity in HT-29 
cells exposed to intact ATP and wheat phytase-treated ATP, 
even though the relationship between overexpression of 
procaspase-3 and insufficient caspase-3 activity is puzzling 
in various cancer cell lines until now [35], and the mechanism 
by which procaspase-3 is converted into active caspase-3 re-
mains unclear [36].  
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