DOI QR코드

DOI QR Code

Evaluation of the impact of phytase supplementation on growth performance, nutrient digestibility, and fecal score of growing pigs

  • Shanshui Gao (Department of Animal Resource and Science, Dankook University) ;
  • Md Mortuza Hossain (Department of Animal Resource and Science, Dankook University) ;
  • In Ho Kim (Department of Animal Resource and Science, Dankook University)
  • Received : 2023.06.20
  • Accepted : 2023.09.22
  • Published : 2023.12.01

Abstract

Phytase enhances phosphorus availability in pig diets by breaking down phytic acid, which is challenging for animals to digest. This study aimed to assess the impact of dietary phytase supplementation on the growth performance, nutrient digestibility, and fecal score of growing pigs. Sixty-four growing pigs ([Yorkshire × Landrace] × Duroc, average body weight 21.20 ± 0.18 kg) were randomly assigned to one of two treatment groups. The dietary treatments were CON, basal diet, and PHY, basal diet + 0.0025% phytase. Results indicated a tendency for increased average daily gain in the phytase-supplemented diet group (p < 0.10) compared to the control diet group. The average daily feed intake and feed conversion ratio were not affected by the addition of 0.0025% phytase. Furthermore, dry matter digestibility, nitrogen content, and digestible energy were not influenced (p > 0.05) by phytase supplementation. Fecal score remained similar (p > 0.05) in growing pigs fed phytase-supplemented and control diets. These findings suggest that supplementing the diet of growing pigs with 0.0025% phytase may lead to improved average daily gain without adverse effects on nutrient digestibility and fecal score. This implies the potential to enhance growth performance without compromising overall health or digestion in pigs. Further investigations into the optimal levels of phytase supplementation for growing pigs are recommended.

Keywords

References

  1. Abbasi F, Fakhur-un-Nisa T, Liu J, Luo X, Abbasi IH. 2019. Low digestibility of phytate phosphorus, their impacts on the environment, and phytase opportunity in the poultry industry. Environmental Science and Pollution Research 1:9469-9479. DOI:10.1007/s11356-018-4000-0.
  2. AOAC (Association of Official Analytical Chemists). 2005. Official methods of analysis. 17th Edition. AOAC, Washington, D.C., USA.
  3. Chen R, Xue G, Chen P, Yao B, Yang W, Ma Q, Fan Y, Zhao Z, Tarczynski MC, Shi J. 2007. Transgenic maize plants expressing a fungal phytase gene. Transgenic Research 17:633-643. DOI:10.1007/s11248-007-9138-3.
  4. Cowieson AJ, Ruckebusch JP, Sorbara JOB, Wilson JW, Guggenbuhl P, Tanadini L, Roos FF. 2017. A systematic view on the effect of microbial phytase on ileal amino acid digestibility in pigs. Animal Feed Science and Technology 231:138-149. DOI:10.1016/j.anifeedsci.2017.07.007.
  5. da Silva CA, Callegari MA, Dias CP, Bridi AM, Pierozan CR, Foppa L, da Silva Martins CC, Dias FTF, Passos A, Hermes R. 2019. Increasing doses of phytase from Citrobacter braakii in diets with reduced inorganic phosphorus and calcium improve growth performance and lean meat of growing and finishing pigs. PLoS ONE 14:e0217490. DOI:10.1371/journal.pone.0217490.
  6. Dang DX, Chun SG, Kim IH. 2022. Feeding broiler chicks with Schizosaccharomyces pombe-expressed phytase-containing diet improves growth performance, phosphorus digestibility, toe ash, and footpad lesions. Animal Bioscience 35:1390-1399. DOI:10.5713/ab.21.0462.
  7. Dang DX, Kim IH. 2021. Effects of adding high-dosing Aspergillus oryzae phytase to corn-wheat-soybean meal-based basal diet on growth performance, nutrient digestibility, faecal gas emission, carcass traits and meat quality in growing-finishing pigs. Journal of Animal Physiology and Animal Nutrition 105:1056-1062. DOI:10.1111/jpn.13537.
  8. Dersjant-Li Y, Awati A, Schulze H, Partridge G. 2015. Phytase in non-ruminant animal nutrition: A critical review on phytase activities in the gastrointestinal tract and influencing factors. Journal of the Science of Food and Agriculture 95:878-896. DOI: 10.1002/jsfa.6998.
  9. Dersjant-Li Y, Schuh K, Wealleans AL, Awati A, Dusel G. 2017. Effect of a Buttiauxella phytase on production performance in growing/finishing pigs fed a European-type diet without inclusion of inorganic phosphorus. Journal of Applied Animal Nutrition 5:e4. DOI:10.1017/JAN.2017.3.
  10. Gallardo C, Dadalt JC, Trindade Neto MA. 2020. Carbohydrases and phytase with rice bran, effects on amino acid digestibility and energy use in broiler chickens. Animal 14:482-490. DOI:10.1017/S1751731119002131.
  11. Grela ER, Muszynski S, Czech A, Donaldson J, Stanislawski P, Kapica M, Brezvyn O, Muzyka V, Kotsyumbas I, Tomaszewska E. 2020. Influence of phytase supplementation at increasing doses from 0 to 1500 FTU/kg on growth performance, nutrient digestibility, and bone status in grower-finisher pigs fed phosphorus-deficient diets. Animals 10:847.
  12. Guggenbuhl P, Calvo EP, Fru F. 2016. Effect of high dietary doses of a bacterial 6-phytase in piglets fed a corn-soybean meal diet. Journal of Animal Science 94:307-309. DOI:10.2527/jas.2015-9807.
  13. Heisler J, Glibert PM, Burkholder JM, Anderson DM, Cochlan W, Dennison WC, Dortch Q, Gobler CJ, Heil CA, Humphries E, et al. 2008. Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae 8:3-13. DOI:10.1016/j.hal.2008.08.006.
  14. Hirvonen J, Liljavirta J, Saarinen MT, Lehtinen MJ, Ahonen I, Nurminen P. 2019. Effect of phytase on in vitro hydrolysis of phytate and the formation of myo-inositol phosphate esters in various feed materials. Journal of Agricultural and Food Chemistry 67:11396-11402. DOI:10.1021/acs.jafc.9b03919.
  15. Humer E, Schwarz C, Schedle K. 2015. Phytate in pig and poultry nutrition. Journal of Animal Physiology and Animal Nutrition 99:605-625. DOI:10.1111/jpn.12258.
  16. Jolliff JS, Mahan DC. 2012. Effect of dietary inulin and phytase on mineral digestibility and tissue retention in weanling and growing swine. Journal of Animal Science 90:3012-3022. DOI:10.2527/jas.2011-4424.
  17. Lagos LV, Lee SA, Bedford MR, Stein HH. 2021. Reduced concentrations of limestone and monocalcium phosphate in diets without or with microbial phytase did not influence gastric pH, fecal score, or growth performance, but reduced bone ash and serum albumin in weanling pigs. Translational Animal Science 5:txab115. DOI:10.1093/tas/txab115.
  18. Madrid J, Martinez S, Lopez C, Hernandez F. 2013. Effect of phytase on nutrient digestibility, mineral utilization, and performance in growing pigs. Livestock Science 154:144-151.
  19. Moe SM. 2008. Disorders involving calcium, phosphorus, and magnesium. Primary Care: Clinics in Office Practice 35:215-237.
  20. Moita VHC, Kim SW. 2022. Nutritional and functional roles of phytase and xylanase enhancing the intestinal health and growth of nursery pigs and broiler chickens. Animals 12:3322. DOI:10.3390/ani12233322.
  21. NRC (National Research Council). 2012. Nutrient requirements of swine, 11th rev. edition. National Academy Press, Washington, D.C., USA.
  22. Ravindran V, Morel PC, Partridge GG, Hruby M, Sands JS. 2006. Influence of an Escherichia coli-derived phytase on nutrient utilization in broiler starter fed diets containing varying concentrations of phytic acid. Poultry Science 85:82-89. DOI:10.1093/ps/85.1.82.
  23. Rizwanuddin S, Kumar V, Naik B, Singh P, Mishra S, Rustagi S, Kumar V. 2023. Microbial phytase: Their sources, production, and role in the enhancement of nutritional aspects of food and feed additives. Journal of Agriculture and Food Research 12:100559. DOI:10.1016/j.jafr.2023.100559.
  24. Rosenfelder-Kuon P, Klein N, Zegowitz B, Schollenberger M, Kuhn I, Thuringer L, Seifert J, Rodehutscord M. 2020. Phytate degradation cascade in pigs as affected by phytase supplementation and rapeseed cake inclusion in cornsoybean meal-based diets. Journal of Animal Science 98:skaa053. DOI:10.1093/jas/skaa053.
  25. Satter LD, Klopfenstein TJ, Erickson GE, Powell JM. 2005. Phosphorus and dairy/beef nutrition. In Phosphorus: Agriculture and the Environment edited by Sims JT, Sharpley AN. pp. 587-606. American Society of Agronomy, Madison, Wisconsin, USA.
  26. Sefer D, Petrujkic B, Markovic R, Grdovic S, Nestorovic B, Bogosavljevic V, Kokoskov N, Milic D. 2012. Effect of phytase supplementation on growing pigs performance. Acta Veterinaria 62:627-639. DOI:10.2298/AVB1206627S.
  27. Selle PH, Cadogan DJ, Bryden WL. 2003. Effects of phytase supplementation of phosphorus-adequate, lysine-deficient, wheat-based diets on growth performance of weaner pigs. Australian Journal of Agricultural Research 54:323-330. DOI:10.1071/AR02121.
  28. Selle PH, Ravindran V. 2007. Microbial phytase in poultry nutrition. Animal Feed Science and Technology 135:1-41.
  29. Selle PH, Ravindran V. 2008. Phytate-degrading enzymes in pig nutrition. Livestock Science 113:99-122. DOI:10.1016/j.livsci.2007.05.014.
  30. Singh N, Kuhar S, Priya K, Jaryal R, Yadav R. 2018. Phytase: The feed enzyme, an overview. pp. 269-327. Advances in Animal Biotechnology and its Applications. Springer, Singapore.
  31. Thacker PA, Rossnagel BG, Raboy V. 2006. The effects of phytase supplementation on nutrient digestibility, plasma parameters, performance and carcass traits of pigs fed diets based on low phytate barley without inorganic phosphorus. Canadian Journal of Animal Science 86:245-254. DOI:10.4141/A05-077.
  32. Vandeputte D, Falony G, Vieira-Silva S, Tito RY, Joossens M, Raes J. 2016. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut 65:57-62. DOI:10.1136/gutjnl-2015-309618.
  33. Velayudhan DE, Heo JM, Dersjant-Li Y, Owusu-Asiedu A, Nyachoti CM. 2015. Efficacy of novel 6-phytase from Buttiauxella sp. on ileal and total tract nutrient digestibility in growing pigs fed a corn-soy based diet. Animal Feed Science and Technology 210:217-224. DOI:10.1016/j.anifeedsci.2015.10.005.
  34. Wen X, Wang L, Zheng C, Yang X, Ma X, Wu Y, Chen Z, Jiang Z. 2018. Fecal scores and microbial metabolites in weaned piglets fed different protein sources and levels. Animal Nutrition 4:31-36. DOI:10.1016/j.aninu.2017.10.006.
  35. Zhai H, Adeola O, Liu J. 2022. Phosphorus nutrition of growing pigs. Animal Nutrition 9:127-137. DOI:10.1016/j.aninu.2022.01.010.
  36. Zhai H, Cowieson AJ, Pappenberger G, Zhang J, Wu J. 2021. The effect of short-term phytase supplementation on the apparent total tract digestibility of calcium and phosphorus and the reproductive performance of late gestation and lactating sows fed diets without mineral phosphorus. Journal of Animal Science 99:skab194. DOI:10.1093/jas/skab194.