Progressive Screening of Thermostable Yeasts for Phytase Production

  • Ries, Edi Franciele (Food Science Department, Faculty of Food Engineering, Campinas State University (UNICAMP)) ;
  • Macedo, Gabriela Alves (Food Science Department, Faculty of Food Engineering, Campinas State University (UNICAMP))
  • Published : 2009.06.30

Abstract

Biotechnological phytase preparations are commercially available and are currently used in animal feeding. However, thermostability constraints, low yields, and the high cost of the enzyme have limited its use. This study represents a new perspective for the food enzyme market. The research screened thermostable yeast strains for their ability to produce phytase. The screening was carried out with a gradual increase in temperature ($30-48^{\circ}C$). Sixteen strains (1 strain identified as Saccharomyces cerevisiae) maintained the ability to produce phytase at $48^{\circ}C$ and their phytase activity was confirmed using 2 phytase assay methodologies. The yeast strains tested in this study seem to be potential efficient producers of phytase, indicating a possible new source of thermostable phytase of commercial interest, particularly that from S. cerevisiae.

Keywords

References

  1. Pandey A, Szkacks G, Soccol CR, Rodriguez-Leon JA, Soccol VT. Production, purification, and properties of microbial phytases. Bioresource Technol. 77: 203-214 (2001) https://doi.org/10.1016/S0960-8524(00)00139-5
  2. Casey A, Walsh G. Identification and characterization of a phytase of potential commercial interest. J. Biotechnol. 110: 313-322 (2004) https://doi.org/10.1016/j.jbiotec.2004.03.001
  3. Vats P, Banerjee UC. Production studies and catalytic properties of phytases (myo-inositolhexakisphosphate phosphohydrolases): An overview. Enzyme Microb. Tech. 35: 3-14 (2004) https://doi.org/10.1016/j.enzmictec.2004.03.010
  4. Common F. Biological availability of phosphorus in pigs. Nature 143: 370-380 (1989)
  5. Walsh GA, Power RF, Headon DR. Enzymes in the animal feed industry. Trends Food. Sci. Tech. 5: 81-87 (1994) https://doi.org/10.1016/0924-2244(94)90242-9
  6. Mallin MA. Impacts of industrial animal production on rivers and estuaries. Am. Sci. 88: 26-37 (2000) https://doi.org/10.1511/2000.1.26
  7. Konietzny U, Greiner R. Molecular and catalytic properties of phytate-degrading enzymes (phytases). Int. J. Food Sci. Tech. 37: 791-812 (2002) https://doi.org/10.1046/j.1365-2621.2002.00617.x
  8. Liu BL, Rafiq A, Tzeng YM, Rob A. The induction and characterization of phytase and beyond. Enzyme Microb. Tech. 22: 415-424 (1998) https://doi.org/10.1016/S0141-0229(97)00210-X
  9. Bae HD, Yanke LJ, Cheng KJ, Selinger LB. A novel staining method for detecting phytase activity. J. Microbiol. Meth. 39: 17-22 (1999) https://doi.org/10.1016/S0167-7012(99)00096-2
  10. Casey A, Walsh G. Purification and characterization of extracellular phytase from Aspergillus niger ATCC 9142. Bioresoure Technol. 86: 183-188 (2003) https://doi.org/10.1016/S0960-8524(02)00145-1
  11. Selle PH, Ravindran V. Microbial phytase in poultry nutrition. Anim. Feed Sci. Tech. 135: 1-41 (2006) https://doi.org/10.1016/j.anifeedsci.2006.06.010
  12. Cao L, Wang W, Yang C, Yang Y, Diana J, Yakupitiyage A, Luo ZLD. Application of microbial phytase in fish feed. Enzyme Microb. Tech. 40: 497-507 (2007) https://doi.org/10.1016/j.enzmictec.2007.01.007
  13. Andlid TA, Veide J, Sandberg AS. Metabolism of extracellular inositol hexaphosphate (phytate) by Saccharomyces cerevisiae. Int. J. Food Microbiol. 97: 157-169 (2004) https://doi.org/10.1016/j.ijfoodmicro.2004.04.016
  14. Nayini NR, Markakis P. The phytase of yeast. Lebensm. -Wiss. Technol. 17: 24-26 (1984)
  15. Veide J, Andlid T. Improved extracellular phytase activity in Saccharomyces cerevisiae by modifications in the PHO system. Int. J. Food Microbiol. 108: 60-67 (2006) https://doi.org/10.1016/j.ijfoodmicro.2005.10.020
  16. Segueilha L, Lambrechts C, Boze H, Moulin G, Galzy P. Purification and properties of the phytase from Schwanniomyces castelli. J. Ferment. Bioeng. 74: 7-11 (1992) https://doi.org/10.1016/0922-338X(92)90259-W
  17. Lambrechts C, Boze H, Segueilha L, Moulin G, Galzy P. Influence of culture conditions on the biosynthesis of Schwanniomyces castelli phytase. Biotechnol. Lett. 15: 399-404 (1993) https://doi.org/10.1007/BF00128284
  18. Sano K, Fukuhara H, Nakamura Y. Phytase of the yeast Arxula adeninivorans. Biotechnol. Lett. 21: 33-38 (1999) https://doi.org/10.1023/A:1005438121763
  19. Vohra A, Satyanarayana T. Phytase production by the yeast Pichia anomala. Biotechnol. Lett. 23: 551-554 (2001) https://doi.org/10.1023/A:1010314114053
  20. Mayer AF, Hellmuth K, Schlieker H, Lopez-Ulibarri R, Oertel S, Dahlems U, Strasser AWM, Van Loon APGM. An expression system matures : A highly efficient and cost-effective process for phytase production by recombinant strains of Hansenula polymorpha. Biotechnol. Bioeng. 63: 373-381 (1998) https://doi.org/10.1002/(SICI)1097-0290(19990505)63:3<373::AID-BIT14>3.0.CO;2-T
  21. Han Y, Wilson DB, Lei XG. Expression of an Aspergillus niger phytase gene (pIpyA) in Saccharomyces cerevisiae. Appl. Environ. Microb. 65: 1915-1918 (1999)
  22. Han Y, Lei XG. Role of glycosylation in the functional expression of an Aspergillus niger phytase (phyA) in Pichia pastoris. Arch. Biochem. Biophys. 364: 83-90 (1999) https://doi.org/10.1006/abbi.1999.1115
  23. Stockmann C, Losen M, Dahlems U, Knocke C, Gellissen G, Buchs J. Effect of oxygen supply on passaging, stabilizing, and srening of recombinant Hansenula polymorpha production strains in test tube cultures. FEMS Yeast Res. 4: 195-205 (2003) https://doi.org/10.1016/S1567-1356(03)00147-8
  24. Huang H, Huiying L, Yang P, Meng K, Wang Y, Yuan T, Bai Y, Yao B. A novel phytase with preferable characteristics from Yersinia intermedia. Biochem. Bioph. Res. Co. 350: 884-889 (2006) https://doi.org/10.1016/j.bbrc.2006.09.118
  25. Letítia O. Biotechnological characteristics of some Saccharomyces species isolated from wine yeast culture. Food Sci. Biotechnol. 14: 722-726 (2005)
  26. Howson SJ, Davis RP. Production of phytate-hydrolising enzyme by some fungi. Enzyme Microb. Tech. 5: 377-382 (1983) https://doi.org/10.1016/0141-0229(83)90012-1
  27. Shimizu M. Purification and characterization of phytase from Bacillus subtilis (natto) N-77. Biosci. Biotech. Bioch. 56: 1266-1269 (1992) https://doi.org/10.1271/bbb.56.1266
  28. Lambrechts C, Boze H, Moulin G, Galzy P. Utilization of phytate by some yeasts. Biotechnol. Lett. 14: 61-66 (1992) https://doi.org/10.1007/BF01030915
  29. Kim DS, Godber S, Kim HR. Culture conditions for a new phytaseproducing fungus. Biotechnol. Lett. 27: 1077-1081 (1999) https://doi.org/10.1023/A:1005696829168
  30. Chelius MK, Wodzinski RJ. Strain improvement of Aspergillus niger for phytase production. Appl. Microbiol. Biot. 41: 79-83 (1994) https://doi.org/10.1007/BF00166085
  31. Jung H-K, Park C-D, Bae D-H, Hong J-H. Isolation of alcoholtolerant amylolytic Saccharomyces cerevisiae and its application to alcohol fermentation. Food Sci. Biotechnol. 17: 1160-1164 (2008)
  32. Kim S-D, Kim M-K, Woo C-J, Rhee C-H, Lee S-H. Characterization of psychrophilic yeast in kimchi. Food Sci. Biotechnol. 9: 277-279 (2000)
  33. Engelen AJ, Van der Heeft, Ransdorp HGP, Smit LCE. Simple and rapid determination of phytase activity. J. AOAC Int. 77: 760-764 (1994)
  34. Ullah AHL, Gibson DM. Extracellular phytase (E.C. 3.1.3.8.) from Aspergillus ficcum NRRL 3135: Purification and characterization. Prep. Biochem. 17: 63-91 (1987) https://doi.org/10.1080/00327488708062477
  35. Kim YO, Kim HK, Bae KS, Yu JH, Oh TK. Purification and properties of a thermostable phytase from Bacillus sp. DS11. Enzyme Microb. Tech. 22: 2-7 (1998) https://doi.org/10.1016/S0141-0229(97)00096-3
  36. Segueilha L, Moulin G, Galzy P. Reduction of phytate content in wheat bran and glandless cotton flour by Schwanniomyces castelli. J. Agr. Food Chem. 41: 2451-2454 (1993) https://doi.org/10.1021/jf00036a046
  37. Oh N-S, Lee BH. Phytase properties from Bifidobacterium animalis. Food Sci. Biotechnol. 16: 580-583 (2007)