• Title/Summary/Keyword: photovoltaic module

Search Result 634, Processing Time 0.021 seconds

Analysis of Electrical Characteristics of Amorphous Silicon Thin Film Photovoltaic Module Exposed Outdoor (옥외 설치된 비정질 실리콘 박막태양전지모듈의 전기적 출력 특성 분석)

  • Kim, Kyung-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.4
    • /
    • pp.62-67
    • /
    • 2008
  • In this study, we analyze the electrical characteristics of amorphous silicon thin film photovoltaic module which are installed about 5 years ago. Four modules from PV system are extracted and measured the maximum power change ratio using solar simulator(Class A). Also, infrared camera is used to get thermal distribution characteristics of system. The external appearance change is compared with initial module by naked eye examination. Through this experiment, 31% maximum output power drop is observed. The detail description is specified as the following paper.

A Study on the Optimum Selection of Placing Photovoltaic Module In the Metropolitan City Using a TRNSYS (TRNSYS를 이용한 지역별 고정형 태양광모듈 배치안 검토)

  • Park, Sung-Hyun;Seo, Jang-Hoo
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.297-302
    • /
    • 2011
  • In this study, used Trnsys and will apply metropolitan city distinguishes, fixations and BIPV systems the photovoltaic module arrangement environment which receives solar radiation quantity plentifully from the case design process which and most the outcome value simulation did analyzed. The climate data uses each metropolitan city distinguishes 20 average weather data, With measured values of horizontal solar radiation. The error scope appeared with 0.1%~6.7%. Variable of module arrangement Azimuth and angle of inclination of module and comparison group Module on due south direction angle of inclination $45^{\circ}$ day time set with the yearly average solar radiation quantity which receives. The result When the case comparison group which arranges a solar storehouse module with optimum environment and comparing until the minimum 1.4% - maximum 10.9% the solar radiation quantity difference appears with the thing, metropolitan city distinguishes considers the case solar radiation quantity which will arrange a photovoltaic module and that must establish with optimum environment judges.

  • PDF

The mechanical strength characteristic on front-load of PV module (PV모듈의 전면 하중 기계강도 특성)

  • Choi, Ju-Ho;Kim, Kyung-Soo;Kang, Gi-Hwan;Yu, Gwon-jong;Kim, Il-Soo
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.164-168
    • /
    • 2011
  • This study of PV modules in the external environment, learn about the mechanical strength characteristics, the module will investigate the aluminum frame. Positive support in the module by wind loads if uniformly distributed load acting on the front glass of the module size and elongation(${\omega}$), and accordingly, depending on the bend is sealed inside the solar cell, micro-cracks that will occur. At this point the most damage-prone parts in a module, this module is part of the center of a strong wind load is applied by the destruction of the environment does not occur in the module frame to secure the reliability and to evaluate changes in the structure.

  • PDF

A study of Comparative Analysis of CPV and PV Module through Long-term Outdoor Testing (장기 Outdoor Test를 통한 CPV와 PV 모듈의 발전량 비교분석)

  • Kim, Minsu;Lee, Yuri;Cho, Minje;Oh, Soo Young;Jung, Jae Hak
    • Current Photovoltaic Research
    • /
    • v.5 no.1
    • /
    • pp.33-37
    • /
    • 2017
  • Today, photovoltaic power generation mostly uses Si crystalline solar cell modules. The most vulnerable part of the Si solar cell module is that the power generation decreases due to the temperature rise. But, it is widely used because of low installation cost. In the solar market, where Si crystalline solar cell modules are widely used. The CPV (Concentrated Photovoltaic) module appeared in the solar market. The CPV module reduces the manufacturing cost of the solar cell by using non-Si in the solar cell. Also, there is an advantage that a rise in temperature does not cause a drop in power generation. But this requires high technology to install and has a disadvantage that the initial installation cost is expensive compared to normal Si solar cell module. So that we built a testbed to see these characteristics. The testbed was used to measure the amount of power generation in a long-term outdoor environment and compared with the general Si solar cell module.

Performance Ratio of Crystalline Si and Triple Junction a-Si Thin Film Photovoltaic Modules for the Application to BIPVs

  • Cha, Hae-Lim;Ko, Jae-Woo;Lim, Jong-Rok;Kim, David-Kwangsoon;Ahn, Hyung-Keun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.1
    • /
    • pp.30-34
    • /
    • 2017
  • The building integrated photovoltaic system (BIPV) attracts attention with regard to the future of the photovoltaic (PV) industry. It is because one of the promising national and civilian projects in the country. Since land area is limited, there is considerable interest in BIPV systems with a variety of angles and shapes of PV panels. It is therefore expected to be one of the major fields for the PV industry in the future. Since the irradiation is different from each installation angle, the output can be predicted by the angles. This is critical for a PV system to be operated at maximum power and use an efficient design. The development characteristics of tilted angles based on data results obtained via long-term monitoring need to be analyzed. The ratio of the theoretically available and actual outputs is compared with the installation angles of each PV module to provide a suitable PV system for the user.

Characteristics of Photovoltaic I-V and P-V According to the Irradiation and Module Temperature (태양광 시스템의 일사량과 모듈온도에 따른 I-V 및 P-V 특성에 관한 연구)

  • Shin, Hyeon-Man;Li, Ying;Choi, Yong-Sung;Zhang, You-Sai;Lee, Kyung-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.3
    • /
    • pp.339-346
    • /
    • 2009
  • Photovoltaic (PV) energy is a renewable and harmless energy which offers many advantages. However, solar energy is an extreme intermittent and inconstant energy source. In order to improve the photovoltaic system efficiency and utilize the solar energy more fully, and the DC current and DC power vary with the irradiation and module temperature, it is necessary to study the characteristics of photovoltaic I-V and P-V according to the external factors. This paper presents the analysis of characteristics of photovoltaic I-V and P-V according to the irradiation and the module temperature. The results show that the DC current and the DC power of the photovoltaic system are increased along with the increasing values of irradiation and module temperature.

Characterization of Photovoltaic Module Encapsulant According to UV Irradiation Dose (자외선 조사량에 따른 태양전지 모듈 봉지재의 특성 분석)

  • Lee, Song-Eun;Bae, Joon-Hak;Shin, Jae-Won;Jeon, Chan-Wook
    • Current Photovoltaic Research
    • /
    • v.6 no.3
    • /
    • pp.81-85
    • /
    • 2018
  • The photovoltaic modules installed in the actual field are affected by various external environments and the electrical performance output value is generally lowered compared to initial output value. The most of photovoltaic modules consists of low iron glass, encapsulant (EVA), back sheet, frame and junction box assembly based on the solar cells. In this paper, the characteristics of encapsulant which is an important constituent material of photovoltaic module were verified by maximum power determination, electro luminescence images, yellowness index measurement, and gel content measurement after ultraviolet (UV) irradiation exposure. The most commonly installed 72 cells crystalline photovoltaic modules were tested after various UV exposure of 0, 15, 30, and $60kWh/m^2$ and compared with the reference module. After UV exposure of $15kWh/m^2$, which is the current international test condition, a small amount of change was observed in yellowness index and electroluminescence, while a gell content rapidly increased. At a cumulative dose of $60kWh/m^2$, which will be a new international test condition in the near future, however, the yellowness index increased sharply and showed the greatest output power drop.

A Brief Review on Variables and Test Priorities of Photovoltaic Module Life Expectancy

  • Padi, Siva Parvathi;Chowdhury, Sanchari;Zahid, Muhammad Aleem;Kim, Jaeun;Cho, Eun-Chel;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.9 no.2
    • /
    • pp.36-44
    • /
    • 2021
  • To endorse the reliability and durability of the solar photovoltaic (PV) device several tests were conducted before exposing to the outdoor field in a non-ideal condition. The PV module has high probability that intend to perform adequately for 30 years under operating conditions. To evaluate the long term performance of the PV module in diversified terrestrial conditions, one should use the outdoor performance data. However, no one wants to wait for 25 years to determine the module reliability. The accelerating stress tests performing in the laboratory by mimicking different field conditions are thus important to understand the performance of a PV module. In this review, we will discuss briefly about different accelerating stress types, levels and prioritization that are used to evaluate the PV module reliability and durability before using them in real field.

The Electrical Characteristics of PV Module by the Stress in accordance with Mechanical Weight Load (기계적 하중에 따른 스트레스로 인한 PV 모듈의 전기적 특성)

  • Kong, Ji-Hyun;Ji, Yang-Geun;Kang, Gi-Hwan;Yu, Gwon-Jong;Ahn, Hyung-Geun;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.104-109
    • /
    • 2009
  • If the Photovoltaic(PV) Module should get physical load, the PV module will be warped according to elongation of the front glass and then micro-crack will be occurred in the heat sealed Solar Cell. This micro-crack drops output of the short circuit current and the open circuit voltage of the PV Module. This is because of increase of resistance component by micro-crack. Micro-crack at specific Solar Cell in the module reduces the durability of PV Module such as less output, Hot-Spot in the PV module caused by Solar Cell output mismatch, heat generating as resistance component caused by micro-crack. In this study, among some factors which effect to the output of crystalline PV Module, we will see how the micro-crack caused by mechanical stress effects to the electrical output of PV Module.

  • PDF

Comparison Results of Photovoltaic Module Performance using Simulation Model (해석모델을 이용한 태양광모듈의 성능결과 비교분석)

  • So, Jung-Hun;Yu, Byung-Gyu;Hwang, Hye-Mi;Yu, Gwon-Jong
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.4
    • /
    • pp.56-61
    • /
    • 2008
  • The modeling of PV (Photovoltaic) module is useful to perform detailed analysis of PV system performance for changing meteorological conditions, verify actual rated power of PV system sizing and determine the optimal design of PV system and components. This paper indicates a modeling approach of PV module performance in terms of meteorological conditions and identifies validity of this modeling method by comparing measured with simulated value of various PV modules using simulation model.