• Title/Summary/Keyword: photolithography

Search Result 507, Processing Time 0.031 seconds

Characterization of polymer surface of LCD blue color filters using SIMS, XPS and AFM (SIMS, XPS, AFM을 이용한 LCD blue color filter의 고분자 표면 연구)

  • 김승희;김태형;이상호;이종완
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.4
    • /
    • pp.321-325
    • /
    • 1997
  • Recently, photosensitive color filters have received much attention for their use in the liquid crystal display (LCD) industry. It is well known that chemical and physical properties of polymer surfaces can be modified by special surface treatments. In this work, we have studied the polymer surfaces of LCD blue color filters which were exposed to the UV light during photolithography. A better understanding of the irradiated polymer surfaces is required for the subsequent processes such as plasma etching, ITO electrode deposition, etc. The surface analysis has been undertaken using secondary ion mass spectrometry (SIMS), x-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). A significant enrichment of the pigment component and roughening of surface with bubble-like feature have been observed at the modified polymer surface.

  • PDF

Inductively coupled plasma etching of SnO2 as a new absorber material for EUVL binary mask

  • Lee, Su-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.124-124
    • /
    • 2010
  • Currently, extreme ultraviolet lithography (EUVL) is being investigated for next generation lithography. EUVL is one of competitive lithographic technologies for sub-22nm fabrication of nano-scale Si devices that can possibly replace the conventional photolithography used to make today's microcircuits. Among the core EUVL technologies, mask fabrication is of considerable importance due to the use of new reflective optics having a completely different configuration compared to those of conventional photolithography. Therefore, new materials and new mask fabrication process are required for high performance EUVL mask fabrication. This study investigated the etching properties of SnO2 (Tin Oxide) as a new absorber material for EUVL binary mask. The EUVL mask structure used for etching is SnO2 (absorber layer) / Ru (capping / etch stop layer) / Mo-Si multilayer (reflective layer) / Si (substrate). Since the Ru etch stop layer should not be etched, infinitely high selectivity of SnO2 layer to Ru ESL is required. To obtain infinitely high etch selectivity and very low LER (line edge roughness) values, etch parameters of gas flow ratio, top electrode power, dc self - bias voltage (Vdc), and etch time were varied in inductively coupled Cl2/Ar plasmas. For certain process window, infinitely high etch selectivity of SnO2 to Ru ESL could be obtained by optimizing the process parameters. Etch characteristics were measured by on scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analyses. Detailed mechanisms for ultra-high etch selectivity will be discussed.

  • PDF

Fabrication and Characteristics of FET Type Semiconductor Urea and Glucose Sensor Employing Photolithography Techniques (사진식각기술을 이용한 FET형 반도체 요소 및 포도당센서의 제조와 그 특성)

  • Cho, Byung-Woog;Kim, Chang-Soo;Seo, Hwa-Il;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.1 no.2
    • /
    • pp.101-106
    • /
    • 1992
  • pH-ISFETs, the semiconductor pH sensors, were combined with immobilized enzyme membranes to prepare FET type urea and glucose sensors and its operational characteristics were investigated. Photolithography techniques were applied to immobilize enzymes on the $H^{+}$ sensing membrane of the pH-ISFET with photo-sensitive polymers, PVA-SbQ. Fabricated urea and glucose sensors could determine $0.5{\sim}50{\;}mg/dl$ urea concentrations and $10{\sim}1000{\;}mg/dl$ glucose concentrations, respectively.

  • PDF

Local hydrogel patterning and microcantilever fabrication using dynamic mask lithography (동적 마스크 리소그래피를 이용한 하이드로젤 국소 패터닝 기법과 캔틸레버 제작)

  • Lee, Jungchul;Lee, Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.809-809
    • /
    • 2013
  • We report a new method for highly controllable local patterning of a hydrogel on microfabricated cantilevers and fabrication of all hydrogel microcantilevers. We constructed a dynamic mask based photolithography setup using a commercial beam projector, a 3-axis microstage and other optical components. Dynamic masks generated from the beam projector controlled the shape, size, and position of hydrogel patterns while the 3-axis microstage mainly controlled the thickness of hydrogel patterns and hydrogel microcantilevers. Using the constructed setup, polyethyleneglycol diacrylate (PEGDA) was patterned on microfabricated cantilevers in a highly controlled manner. Currently, the smallest PEGDA patternable is a 5-${\mu}m$-diameter circle with a thickness of ~$10{\mu}m$. To confirm thicknesses of patterned PEGDAs on silicon microcantilevers, resonance frequencies of microcantilevers were measured before and after each PEGDA patterning. Thicknesses extracted from resonance measurements showed good agreement with measurements using an optical microscope. In addition, PEGDA microcantilevers with various dimensions and thicknesses were fabricated on glass and silicon substrates. Surfaces of fabricated all hydrogel microcantilevers were flat enough to facilitate other post processing and to be used for various sensing applications.

  • PDF

A study on the electromigration phenomena in Al-1%Si thin film interconnections with Ti underlayers (Ti underlayer를 갖는 AI-1%Si 박막배선에서의 일렉트로마이그레이션 현상에 관한 연구)

  • 유희영;김진영
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.1
    • /
    • pp.31-35
    • /
    • 1999
  • In this paper, the lifetime dependence as a function of the line length of Al-1%Si thin film interconnections due to electromigration in semiconductor devices was studied. Al-1%Si thin film interconnections with a pattern of straight type were formed by using a standard photolithography process. The test patterns manufactured have line lengths in the range of 100 to 1600 $mu extrm{m}$. Al-1%Si thin film interconnections with Ti underlayers showed longer lifetime than those without Ti underlayers. Ti underlayers are believed to improve electromigration resistance resulting in a longer lifetime in Al-1%Si thin film interconnections. The dependence of lifetime on the line length in Al-1%Si/Ti thin film interconnections shows a saturation tendency near 800 $\mu\textrm{m}$ line length.

  • PDF

Fabrication of Ceramic-based Passive Mixers for Microfluidic Application by Thick Film Lithography (후막리소그라피를 이용한 세라믹기반의 미세유체소자용 수동형 혼합기의 제조)

  • Choi, Jae-Kyung;Yoon, Young-Joon;Lim, Jong-Woo;Kim, Hyo-Tae;Koo, Eun-Hae;Choi, Youn-Suk;Lee, Jong-Heun;Kim, Jong-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.11
    • /
    • pp.739-743
    • /
    • 2008
  • Microfluidic device can be applied in a wide range of chemical and biological technology. In this paper, ceramic-based T-type passive mixers for microfluidic applications were fabricated by LTCC process combined with thick film photolithography. The base ceramic material in thick film was amorphous cordierite $((Mg,Ca)_2Al_4Si_5O_{18})$ and photoimageable polymers were added to give a photosensitivity. Two types of passive mixer, which showed the channel width of 1.0 mm and $200{\mu}m$, respectively, were designed considering mixing efficiency in the channel and their microfluidic properties were discussed in detail.

Fabrication and Analysis of Characteristics of PRT using High-fine Laser Trimming Technology (고정밀 레이저 가공 기술을 이용한 PRT 제작 및 특성 분석)

  • 노상수;서정환;정귀상;김광호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.1
    • /
    • pp.46-52
    • /
    • 2003
  • In this paper, we fabricated PRT(platinum resistance thermometers) with the trimming technology using high fine laser system. U. V.(wavelength: 355nm) laser was mainly used for adjusting Pt thin films resistors to 100Ω at 0$^{\circ}C$. Internationally, the accepted A-class tolerance of temperature sensor is ${\pm}$0.06Ω at 0$^{\circ}C$. according to DIN EN 60751. The width of trimmed lines was about 10$\mu\textrm{m}$ and the best trimming conditions of Pt thin films were power : 37mW, frequency : 200Hz and bite size:1.5$\mu\textrm{m}$. And 96 resistors, fabricated by photolithography and etching process, have 79∼90Ω and 91∼102Ω as the proportion of 45.7% and 57.3%, respectively. As result of sitting Pt thin films resistors to the target value(109.73Ω at 25$^{\circ}C$), 82.3% of all resistors had the tolerance within ${\pm}$0.03Ω and the others(17.7%) were within ${\pm}$0.06Ω of A-class tolerance. The PRTs which wore fabricated in this research had excellent characteristics as follows; high accuracy, international standard TCR(temperature coefficient of resistance) value, long-term stability, wide temperature range, good linearity and repeatability, rapid response time, etc.