• 제목/요약/키워드: photocatalytic reaction

검색결과 276건 처리시간 0.028초

평판형 태양광반응기를 이용한 복합오염물질의 동시처리 연구 (Simultaneous treatment of Cr(VI) and EDCs using flat type photocatalytic reactor under solar irradiation)

  • 김세원;조혜경;주현규;허남국;이광복;김종오;윤재경
    • 상하수도학회지
    • /
    • 제30권5호
    • /
    • pp.501-509
    • /
    • 2016
  • In this study, a flat-type photocatalytic reactor is applied under solar irradiation for simultaneous treatment of target pollutants: reduction of Cr(VI) to Cr(III) and oxidation of EDCs (BPA, EE2, E2). An immobilized type of photocatalyst was fabricated to have self-grown nanotubes on its surface in order to overcome limitations of powdery photocatalyst. Moreover, Ti mesh form was chosen as substrate and modified to have both larger surface area and photocatalyst content. Ti mesh was anodized at 50V and $25^{\circ}C$ for 30min in the mixed electrolytes ($NH_4F-H_2O-C_2H_6O_2$) and annealed at $450^{\circ}C$ for 2 hours in ambient oxygen to have anatase structure. Surface characterization was done with SEM and XRD methodologies. Fabricated NTT was applied to water treatment, and coexisting Cr(VI) and organics (EDCs) enhanced each other's reactions by scavenging holes and electrons and thus impeding recombination. Also, several experiments were conducted outdoor under direct sunlight and it was observed that both solar-tracking and applying modified photocatalyst were proven to enhance reaction efficiency.

이산화티탄 광촉매 졸(sol)의 실내환경 코팅에 의한 실내공기질 개선 (Improvement of Indoor Air Quality by Coating of Indoor Materials of $TiO_2$ Photocatalyst Sol)

  • 양원호;김대원;정문호;양진섭;박기선
    • 한국환경보건학회지
    • /
    • 제30권2호
    • /
    • pp.92-97
    • /
    • 2004
  • Three methods for VOCs emissions control in indoor air are reduction at the source, ventilation between indoor and outdoor, and removal. The best alternative should be to replace highly emitting sources with sources having low emissions, but the pertinent information on VOCs is not always available from manufactures. Other ways of improving indoor air quality are needed. It is to increase the outside fresh-air flow to dilute the pollutants, but this method would generally provide only a dilution effect without destruction in residence. An ideal alternative to existing technologies would be a chemical oxidation process able to treat large volumes of slightly contaminated air at normal temperature without additional oxidant such as ozone generator and ion generator. Photocatalytic oxidation(PCO) represents such a process. It is characterized by a surface reaction assisted by light radiation inducing the formation of superoxide, hydroperoxide anions, or hydroxyl radicals, which are powerful oxidants. In comparison with other VOCs removal methods, PCO offers several advantages. The purpose of this study was to explore the possibilities for photocatalytic purification of slightly contaminated indoor air by using visible light such as flurescent visible light(FVL). In this study, a PCO of relatively concentrated benzene using common FVL lamps was investigated as batch type and total volatile organic compounds(TVOCs) using a common FVL lamp and penetrated sun light over window. The results of this study shown the possibility of TiO$_2$ photocatalyst application in the area of indoor air quality control.

Photocatalytic Degradation of Methylene Blue by ACF/TiO2 and ACF/ZnO Composites under UV Light

  • Zhang, Kan;Oh, Won-Chun
    • 한국재료학회지
    • /
    • 제20권1호
    • /
    • pp.31-36
    • /
    • 2010
  • Methylene blue (MB) was degraded by $TiO_2$ and ZnO deposited on an activated carbon fiber (ACF) surface under UV light. The ACF/$TiO_2$ and ACF/ZnO composites were characterized by BET, SEM, XRD, and EDX. The BET surface area was related to the adsorption capacity for composites. The SEM results showed that titanium dioxide and zinc oxide are distributed on the ACF surface. The XRD results showed that the ACF/$TiO_2$ and ACF/ZnO composites contained a unique anatase structure for $TiO_2$ and a typical hexagonal phase for ZnO respectively. These EDX spectra showed the presence of peaks of Ti element on ACF/$TiO_2$ composite and peaks of Zn element on the ACF/ZnO composite. The blank experiments for either illuminating the MB solution or the suspension containing ACF/$TiO_2$ or ACF/ZnO in the dark showed that both illumination and the catalyst were necessary for the mineralization of organic dye. Additionally, the ACF/$TiO_2$ composites proved to be efficient photocatalysts due to degradation of MB at higher reaction rates. The addition of an oxidant $([NH_4]_2S_2O_8)$ led to an increase of the degradation rate of MB for ACF/$TiO_2$ and ACF/ZnO composites.

Aerosol deposition을 이용한 $SrBi_2Nb_2O_9$의 고정화에 의한 광촉매 특성에 관한 연구 (Phtocatalytic Activity of the $SrBi_2Nb_2O_9$ Thick Film by Aerosol Deposition)

  • 김지호;최덕균;황광택;고상민;조우석;김진호
    • 한국수소및신에너지학회논문집
    • /
    • 제21권5호
    • /
    • pp.375-382
    • /
    • 2010
  • A layered perovskite photocatalysts, $SrBi_2Nb_2O_9$ (SBN), was synthesized by the conventional solid-state reaction method and characterized by X-ray diffraction (XRD) and UV-visble spectrophotometry. The results showed that the structure of $SrBi_2Nb_2O_9$ is orthorhombic. Diffuse reflectance spectra for calcined and attrition-milled SBN showed the main absorption edges were less 400 nm, that is ultraviolet region. SBN under micron-sized powder was deposited on the $Al_2O_3$ by room temperature powder spray in vacuum process, so called aerosol deposition (AD), and nano-grained $SrBi_2Nb_2O_9$ photocatalytic thick film was fabricated. AD-deposited SBN thick films were characterized by XRD, scanning electron microscopy (SEM) and UV-visable spectrophotometry, Moreover, it was found that several nano-sized SBN film by AD process can improve the photocatalytic activity under visable reflectance.

UV/Photocatalysis 시스템을 이용한 EtOH의 분해 및 H2S의 산화 (Decomposotion of EtOH and Oxidation of H2S by using UV/Photocatalysis System)

  • 김진길;김성수;홍성창;이의동;강용
    • Korean Chemical Engineering Research
    • /
    • 제51권3호
    • /
    • pp.297-302
    • /
    • 2013
  • 악취 유발 물질인 $H_2S$를 처리하기 위한 UV/photocatalysis의 성능 향상에 관한 연구를 수행하였다. 광촉매 물질을 선정하기 위하여 EtOH을 기준물질로 사용하였으며, 광촉매 반응기의 광활성은 광촉매 반응기의 표면에 코팅된 광촉매의 표면특성과 높은 상관성을 나타냄을 확인하였다. PS 광촉매(STS-01)가 코팅된 광촉매 반응기는 기체선속도가 0.01 m/s, 상대습도가 40%의 조건에서 약 80%의 $H_2S$ 산화효율을 보였으나, 그 이상의 선속도에서 반응활성은 급격히 감소하였다. 광촉매 반응기의 성능유지를 위하여 백금을 광촉매에 담지하였는데 이는 같은 실험조건에서 95% 이상의 우수한 $H_2S$ 전환율을 나타내었다.

Control of Methyl Tertiary-Butyl Ether via Carbon-Doped Photocatalysts under Visible-Light Irradiation

  • Lee, Joon-Yeob;Jo, Wan-Kuen
    • Environmental Engineering Research
    • /
    • 제17권4호
    • /
    • pp.179-184
    • /
    • 2012
  • The light absorbance of photocatalysts and reaction kinetics of environmental pollutants at the liquid-solid and gas-solid interfaces differ from each other. Nevertheless, many previous photocatalytic studies have applied the science to aqueopus applications without due consideration of the environment. As such, this work reports the surface and morphological characteristics and photocatalytic activities of carbon-embedded (C-$TiO_2$) photocatalysts for control of gas-phase methyl tertiary-butyl ether (MTBE) under a range of different operational conditions. The C-$TiO_2$ photocatalysts were prepared by oxidizing titanium carbide powders at $350^{\circ}C$. The characteristics of the C-$TiO_2$ photocatalysts, along with pure TiC and the reference pure $TiO_2$, were then determined by X-ray diffraction, scanning emission microscope, diffuse reflectance ultraviolet-visible-near infrared (UV-VIS-NIR), and Fourier transform infrared spectroscopy. The C-$TiO_2$ powders showed a clear shift in the absorbance spectrum towards the visible region, which indicated that the C-$TiO_2$ photocatalyst could be activated effectively by visible-light irradiation. The MTBE decomposition efficiency depended on operational parameters, including the air flow rate (AFR), input concentration (IC), and relative humidity (RH). As the AFRs decreased from 1.5 to 0.1 L/min, the average efficiencies for MTBE increased from 11% to 77%. The average decomposition efficiencies for the ICs of 0.1, 0.5, 1.0, and 2.0 ppm were 77%, 77%, 54%, and 38%, respectively. In addition, the decomposition efficiencies for RHs of 20%, 45%, 70%, and 95% were 92%, 76%, 50%, and 32%, respectively. These findings indicate that the prepared photocatalysts could be effectively applied to control airborne MTBE if their operational conditions were optimized.

Photocatalytic Generated Oxygen Species Properties by Fullerene Modified Two-Dimensional MoS2 and Degradation of Ammonia Under Visible Light

  • Zou, Cong-Yang;Meng, Ze-Da;Zhao, Wei;Oh, Won-Chun
    • 한국재료학회지
    • /
    • 제31권6호
    • /
    • pp.353-366
    • /
    • 2021
  • In this study, photocatalytic degradation of ammonia in petrochemical wastewater is investigated by solar light photocatalysis. Two-dimensional ultra-thin atomic layer structured MoS2 are synthesized via a simple hydrothermal method. We examine all prepared samples by means of physical techniques, such as SEM-EDX, HRTEM, FT-IR, BET, XRD, XPS, DRS and PL. And, we use fullerene modified MoS2 nanosheets to enhance the activity of photochemically generated oxygen (PGO) species. Surface area and pore volumes of the MoS2-fullerene samples significantly increase due to the existence of MoS2. And, PGO oxidation of MB, TBA and TMST, causing its concentration in aqueous solution to decrease, is confirmed by the results of PL. The generation of reactive oxygen species is detected through the oxidation reaction from 1,5-diphenyl carbazide (DPCI) to 1,5-diphenyl carbazone (DPCO). It is found that the photocurrent density and the PGO effect increase in the case with modified fullerene. The experimental results show that this heterogeneous catalyst has a degradation of 88.43% achieved through visible light irradiation. The product for the degradation of NH3 is identified as N2, but not NO2- or NO3-.

Preparation and Photonic Properties of CNT/TiO2 Composites Derived from MWCNT and Organic Titanium Compounds

  • Oh, Won-Chun
    • 한국세라믹학회지
    • /
    • 제46권3호
    • /
    • pp.234-241
    • /
    • 2009
  • In this study, CNT/$TiO_2$ composites derived from various titanium alkoxides and multiwalled carbon nanotubes (MWCNTs) were synthesized and characterized. Surface areas and pore volumes of the CNT/$TiO_2$ samples showed catastrophic decrease due to deposition of titanium compounds. Scanning electron microscopy (SEM) results indicated that the MWCNTs were homogenously decorated and well-dispersed onto/into the composites without apparent agglomeration of $TiO_2$ particles. In the X-ray diffraction (XRD) patterns, peaks of anatase and rutile phase were observed. The energy dispersive X-ray spectroscopy (EDX) spectra revealed the presence of major elements such as C and O with strong Ti peaks. According to the photocatalytic results, MB removal by a treatment with CNT/$TiO_2$ composites seems to have an excellent removal effect as order of CTIP, CTNB and CTPP composites due to a photolysis of the supported $TiO_2$, the radical reaction and the adsorptivity and absorptivity of the MWCNTs.

A Review of Photocatalytic Treatment for Various Air Pollutants

  • Reddy, P. Venkata Laxma;Kim, Ki-Hyun;Kim, Yong-Hyun
    • Asian Journal of Atmospheric Environment
    • /
    • 제5권3호
    • /
    • pp.181-188
    • /
    • 2011
  • Photocatalysis is a photochemical catalytic reaction which is a highly promising tool for the environmental cleanup process. It is very effective in treatment of environmental pollutants by its unique redox property. It has wide applications in the treatment of atmospheric pollutants (e.g., nitrogen dioxide, trichloroethylene, volatile organics, hydrogen sulfide, benzene, etc) through oxidative removal and by disinfection (aeromicro flora). In this research, the fundamental aspects of photocatalysis are described with respect to the composition of catalysts, experimental conditions (e.g., temperature, duration, etc), and interfering factors (e.g., catalyst deactivation).

UV/TiO2에 의한 수용성 염료의 분해에 관한 연구 (A Study on the Decomposition of Water Soluble Dyes by UV/TiO2)

  • 정갑섭
    • 한국환경과학회지
    • /
    • 제12권3호
    • /
    • pp.319-324
    • /
    • 2003
  • The characteristics of photocatalytic decomposition of dye waste water by titanium dioxide was studied in a batch reactor under constant strength of ultra-violet ray. The decomposition rate of methyl orange by TiO$_2$ was pseudo-first order, anatase type TiO$_2$ was more effective than rutile type below the dosage of 5g. The decomposition rate was increased with decreasing initial pH, increasing reaction temperature and oxidant concentration. The decomposition rate of water soluble dyes was decreased in order of rhodamine B>eosin Y>methyl orange.