Browse > Article
http://dx.doi.org/10.5572/ajae.2011.5.3.181

A Review of Photocatalytic Treatment for Various Air Pollutants  

Reddy, P. Venkata Laxma (Department of Environment and Energy, Sejong University)
Kim, Ki-Hyun (Department of Environment and Energy, Sejong University)
Kim, Yong-Hyun (Department of Environment and Energy, Sejong University)
Publication Information
Asian Journal of Atmospheric Environment / v.5, no.3, 2011 , pp. 181-188 More about this Journal
Abstract
Photocatalysis is a photochemical catalytic reaction which is a highly promising tool for the environmental cleanup process. It is very effective in treatment of environmental pollutants by its unique redox property. It has wide applications in the treatment of atmospheric pollutants (e.g., nitrogen dioxide, trichloroethylene, volatile organics, hydrogen sulfide, benzene, etc) through oxidative removal and by disinfection (aeromicro flora). In this research, the fundamental aspects of photocatalysis are described with respect to the composition of catalysts, experimental conditions (e.g., temperature, duration, etc), and interfering factors (e.g., catalyst deactivation).
Keywords
Treatment of air; Pollution control; Photocatalysis; Oxidation of air pollutants;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bird, M.-G., Greim, H., Snyder, R., Rice, J.-M. (2005) International symposium: Recent advances in benzene toxicity. Chemico-Biological Interactions 153-154, 1-5.   DOI   ScienceOn
2 Blanco, J., Malato, S., Alarcón, D., Gernjak, W., Maldonado, M.-I. (2009). Review of feasible solar energy applications to water processes. Renewable and Sustainable Energy Reviews 13, 1437-1445.   DOI   ScienceOn
3 Capaccioni, B., Taran, Y., Tassi, F., Vaselli, O., Mangani, G. (2004) Source conditions and degradation processes of light hydrocarbons in volcanic gases: an example from El Chichón volcano (Chiapas State, Mexico). Chemical Geology 206, 81-96.   DOI   ScienceOn
4 Chaiprapat, S., Mardthing, R., Kantachote, D., Karnchanawong, S. (2011) Removal of hydrogen sulfide by complete aerobic oxidation in acidic biofiltration. Process Biochemistry 46, 344-352.   DOI   ScienceOn
5 Cheng, Y.-W., Chan, R.-C.-Y., Wong, P.-K. (2007) Disinfection of Legionella pneumophila by photocatalytic oxidation. Water Research 41, 842-852.   DOI   ScienceOn
6 Datta, C., Naidu, R., Yenkie, M.-K. (2004) Photo-oxidative degradation of synthetic organic pollutant p-nitrophenol. Journal of Scientific and Industrial Research 63, 518-521.
7 Demeestere, K., Dewulf, J., Langenhove, H.-V. (2007) Heterogeneous photocatalysis as an advanced oxidation process for the abatement of chlorinated, monocyclic aromatic and sulfurous volatile organic compounds in air. Environmental Science and Technology 37, 489-538.   DOI   ScienceOn
8 Akhavan, O. (2009) Lasting antibacterial activities of $Ag-TiO_2/Ag/a-TiO_2$ nanocomposite thin film photocatalysts under solar light irradiation. Journal of Colloid and Interface Science 336, 117-124.   DOI   ScienceOn
9 Amama, P.-B., Itoh, K., Murabayashi, M. (2001) Photocatalytic oxidation of trichloroethylene in humidified atmosphere. Journal of Molecular Catalysis A: Chemical 176, 165-172.   DOI   ScienceOn
10 An, T., Sun, L., Li, G., Gao, Y., Ying, G. (2011) Photocatalytic degradation and detoxification of o-chloroaniline in the gas phase: Mechanistic consideration and mutagenicity assessment of its decomposed gaseous intermediate mixture. Applied Catalysis B: Environmental 102, 140-146.   DOI   ScienceOn
11 Ao, C.-H., Lee, S.-C., Mak, C.-L., Chan, L.-Y. (2003) Photodegradation of volatile organic compounds (VOCs) and NO for indoor air purification using $TiO_2$: promotion versus inhibition effect of NO. Applied Catalysis B: Environmental 42, 119-129.   DOI   ScienceOn
12 Bahruji, H., Bowker, M., Dickinson, A., Greaves, J., James, D., Millard, L., Pedrono, F. (2010) Sustainable $H_2$ gas production by photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry 216, 115-118.   DOI   ScienceOn
13 Vinu, R., Madras, G. (2010) Environmental remediation and photocatalysis. Journal of the Indian Institute of Science 90, 189-229.
14 Zhong, J., Lu, Y., Jiang, W.-D., Meng, Q-M., He, X.-Z., Li, J.-Z., Chen, Y.-Q. (2009) Characterization and photocatalytic property of Pd/$TiO_2$ with the oxidation of gaseous benzene. Journal of Hazardous Materials 168, 1632-1635.   DOI   ScienceOn
15 Zhong, J., Wang, J., Tao, L., Gong, M., Zhimin, L., Chen, L. (2007) Photocatalytic degradation of gaseous benzene over $TiO_2/Sr_2CeO_4$: Preparation and photocatalytic behavior of $TiO_2/Sr_2CeO_4$. Journal of Hazardous Materials 140, 200-204.   DOI   ScienceOn
16 Zou, L., Luo, Y., Hooper, M., Hu, E. (2006) Removal of VOCs by photocatalysis process using adsorption enhanced $TiO_2-SiO_2$ catalyst. Chemical Engineering and Processing 45, 959-964.   DOI   ScienceOn
17 Smith, J. (2010). The $TiO_2$ Group. University of Colorado. USA. (http://ruby.colorado.edu/-smyth/min/tio2.html)
18 The Lancet (1904) Benzene a poisonous content of coal gas.163, 526-527.
19 Vohra, A., Goswami, D.-Y., Deshpande, D.-A., Block, S.-S. (2006) Enhanced photocatalytic disinfection of indoor air. Applied Catalysis B: Environmental 64, 57-65.   DOI   ScienceOn
20 Wang, K.-H., Jehng, J.-M., Hsieh, Y.-H., Chang, C. (2002) The reaction pathway for the heterogeneous photocatalysis of trichloroethylene in gas phase. Journal of Hazardous Materials 90, 63-75.   DOI   ScienceOn
21 Wei, Z., Sun, J., Xie, Z., Liang, M., Chen, S. (2010) Removal of gaseous toluene by the combination of photocatalytic oxidation under complex light irradiation of UV and visible light and biological process. Journal of Hazardous Materials 177, 814-821.   DOI   ScienceOn
22 www.spacetoday.org/DeepSpace/Telescopes/GreatObservatories/Chandra/ChandraSpectrum.htm.
23 Weisel, C.-P. (2010) Benzene exposure: An overview of monitoring methods and their findings. Chemico-Biological Interactions 184, 58-66.   DOI   ScienceOn
24 Wilke, K., Breuer, H.-D. (1999) The influence of transition metal doping on the physical and photocatalytic properties of titania. Journal of Photochemistry and Photobiology A: Chemistry 121, 49-53.   DOI   ScienceOn
25 Wu, Z., Wang, H., Liu, Y., Gu, Z. (2008) Photocatalytic oxidation of nitric oxide with immobilized titanium dioxide films synthesized by hydrothermal method. Journal of Hazardous Materials 151, 17-25.   DOI   ScienceOn
26 Nishikiori, H., Furukawa, M., Fujii, T. (2011) Degradation of trichloroethylene using highly adsorptive allophane $TiO_2$ nanocomposite. Applied Catalysis B: Environmental 102, 470-474.   DOI   ScienceOn
27 Ohko, Y., Noguchi, H., Nakamura, Y., Negishi, N., Takeuch, K. (2009) Highly selective photocatalytic reduction of $NO_2$ in air to NO using $Cu^{2+}$ -loaded $TiO_2$ thin films. Journal of Photochemistry and Photobiology A: Chemistry 206, 27-31.   DOI   ScienceOn
28 Park, S.-E., Joo, H., Kang, J.-W. (2004) Effect of impurities in $TiO_2$ thin films on trichloroethylene conversion. Conversion of Solar Energy Materials and Solar Cells 83, 39-53.   DOI   ScienceOn
29 Pichat, P., Disdier, J., Van, H.-C., Mas, D., Goutailler, G., Gaysse, C. (2000). Purification/deodorization of indoor air and gaseous effluents by $TiO_2$ photocatalysis. Catalysis Today 63, 363-369.   DOI   ScienceOn
30 Portela, R., Canela, M.-C., Sánchez, B., Marques, F.-C., Stumbo, A.-M., Tessinari, R.-F., Coronado, J.M., Suarez, S. (2008) $H_2S$ photodegradation by $TiO_2$/M-MCM-41 (M=Cr or Ce): Deactivation and by-product generation under UV-A and visible light. Applied Catalysis B: Environmental 84, 643-650.   DOI   ScienceOn
31 Robert, D., Malato, S. (2002). Solar photocatalysis: a clean process for water detoxification. The Science of the Total Environment 291, 85-97.   DOI   ScienceOn
32 Shan, A.-Y., Mohd, T.-I., Rashid, S.-A. (2010) Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: A review. Applied Catalysis A: General 389, 1-8.   DOI   ScienceOn
33 Sleiman, M., Conchon, P., Ferronato, C., Chovelon, J.-M. (2009) Photocatalytic oxidation of toluene at indoor air levels (ppbv): Towards a better assessment of conversion, reaction intermediates and mineralization. Applied Catalysis B: Environmental 86, 159-165.   DOI   ScienceOn
34 Lambert, T.-W., Goodwin, V.-M., Stefani, D., Strosher, L. (2006) Hydrogen sulfide ($H_2S$) and sour gas effects on the eye. Science of the Total Environment 367, 1-22.   DOI   ScienceOn
35 Lathasree, S., Nageswara Rao, A., SivaSankar, B., Sadasivam, V., Rengaraj, K. (2004) Heterogeneous photocatalytic mineralisation of phenols in aqueous solutions. Journal of Molecular Catalysis A: Chemical 223, 101-105.   DOI   ScienceOn
36 Latza, U., Gerdes, S., Baur, X. (2009) Effects of nitrogen dioxide on human health: Systematic review of experimental and epidemiological studies conducted between 2002 and 2006. International Journal of Hygiene and Environmental Health 212, 271-287.   DOI   ScienceOn
37 Machado, L.-C.-R., Charles, B. (2006) Floating photocatalysts based on $TiO_2$ supported on high surface area exfoliated vermiculite for water decontamination. Catalysis Communications 7, 538-541.   DOI   ScienceOn
38 Li, Y., Hwang, D.-S., Lee, N.-H., Kim, S.-J. (2005) Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst. Chemical Physics Letters 404, 25-29.   DOI   ScienceOn
39 Litter, M-I. (1999) Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems. Applied Catalysis B: Environmental 23, 89-114.   DOI   ScienceOn
40 Liu, J.-H., Yang, R., Li, S.-M. (2006) Preparation and application of efficient $TiO_2$/ACFs photocatalyst. Journal of Environmental Sciences 18, 979-982.   DOI   ScienceOn
41 Martinez, L., Blanc, L., Nunn, P., Raviglione, M. (2008) Tuberculosis and air travel: WHO guidance in the era of drug-resistant TB. Travel Medicine and Infectious Disease 6, 177-181.   DOI   ScienceOn
42 Mohseni, M. (2005) Gas phase trichloroethylene (TCE) photooxidation and by product:photolysis vs. titania/silica based photocatalysis. Chemosphere 59, 335-342.   DOI   ScienceOn
43 Denny, F., Scott, J., Chiang, K., Teoh, W.-Y., Amal, R. (2007) Insight towards the role of platinum in the photocatalytic mineralization of organic compounds. Journal of Molecular Catalysis A: Chemical 263, 93-102.   DOI   ScienceOn
44 Devilliers, D. (2006) Semiconductor photocatalysis. Energia Centre for Applied Energy Research 17, 1-4.
45 Edwards, R.-D., Jantunen, M.-J. (2001) Benzene exposure in Helsinki, Finland. Atmospheric Environment 35, 1411-1420.   DOI   ScienceOn
46 Jo, W.-K., Kim, J.-T. (2009) Application of visible-light photocatalysis with nitrogen-doped or unmodified titanium dioxide for control of indoor-level volatile organic compounds. Journal of Hazardous Materials 164, 360-366.   DOI   ScienceOn
47 Fu, X., Zeltner, W.-A., Anderson, M.-A. (1995) The gasphase photocatalytic mineralization of benzene on porous titania-based catalysts. Applied Catalysis B: Environmental 6, 209-224.   DOI   ScienceOn
48 Fujishima, A., Honda, K., Kikuchi, S. (1969) Photosensitized electrolytic oxidation on TiO2 semiconductor electrode. J Chem Soc Japan (Kogyo Kagaku Zasshi) 72, 108-109.
49 Fujishima, A., Rao, N.-T., Tryk, A. (2000) $TiO_2S$ photocatalysts and diamond electrodes. Electrochimica Acta 45, 4683-4690.   DOI   ScienceOn
50 Juanru, H., Mingwei, L., Zhong, C. (2007) Advances in doping of titania photocatalytic catalysts. Industrial Catalysis 15, 1-4.
51 Kataoka, H. (1996) Derivatization reactions for the determination of amines by gas chromatography. Journal of Chromatography 733, 19-34.   DOI   ScienceOn
52 Kourtidis, K., Kelesis, A., Petrakakis, M. (2008) Hydrogen sulfide ($H_2S$) in urban ambient air. Atmospheric Environment 42, 7476-7482.   DOI   ScienceOn
53 Bai, X.-F., Cao, Y., Wu, W. (2010) Photocatalytic decomposition of $H_2S$ to produce Hydrogen over CdS nanoparticles formed in HY-zeolite pore. Renewable Energy (Article in Press).
54 Ballari, M.-M., Yu, Q.-L., Brouwers, H.-G. (2010) Experimental study of the NO and $NO_2S$ degradation by photocatalytically active concrete. Catalysis Today 161, 165-180.