DOI QR코드

DOI QR Code

A Review of Photocatalytic Treatment for Various Air Pollutants

  • Reddy, P. Venkata Laxma (Department of Environment and Energy, Sejong University) ;
  • Kim, Ki-Hyun (Department of Environment and Energy, Sejong University) ;
  • Kim, Yong-Hyun (Department of Environment and Energy, Sejong University)
  • Received : 2011.03.01
  • Accepted : 2011.05.27
  • Published : 2011.09.30

Abstract

Photocatalysis is a photochemical catalytic reaction which is a highly promising tool for the environmental cleanup process. It is very effective in treatment of environmental pollutants by its unique redox property. It has wide applications in the treatment of atmospheric pollutants (e.g., nitrogen dioxide, trichloroethylene, volatile organics, hydrogen sulfide, benzene, etc) through oxidative removal and by disinfection (aeromicro flora). In this research, the fundamental aspects of photocatalysis are described with respect to the composition of catalysts, experimental conditions (e.g., temperature, duration, etc), and interfering factors (e.g., catalyst deactivation).

Keywords

References

  1. Akhavan, O. (2009) Lasting antibacterial activities of $Ag-TiO_2/Ag/a-TiO_2$ nanocomposite thin film photocatalysts under solar light irradiation. Journal of Colloid and Interface Science 336, 117-124. https://doi.org/10.1016/j.jcis.2009.03.018
  2. Amama, P.-B., Itoh, K., Murabayashi, M. (2001) Photocatalytic oxidation of trichloroethylene in humidified atmosphere. Journal of Molecular Catalysis A: Chemical 176, 165-172. https://doi.org/10.1016/S1381-1169(01)00249-7
  3. An, T., Sun, L., Li, G., Gao, Y., Ying, G. (2011) Photocatalytic degradation and detoxification of o-chloroaniline in the gas phase: Mechanistic consideration and mutagenicity assessment of its decomposed gaseous intermediate mixture. Applied Catalysis B: Environmental 102, 140-146. https://doi.org/10.1016/j.apcatb.2010.11.035
  4. Ao, C.-H., Lee, S.-C., Mak, C.-L., Chan, L.-Y. (2003) Photodegradation of volatile organic compounds (VOCs) and NO for indoor air purification using $TiO_2$: promotion versus inhibition effect of NO. Applied Catalysis B: Environmental 42, 119-129. https://doi.org/10.1016/S0926-3373(02)00219-9
  5. Bahruji, H., Bowker, M., Dickinson, A., Greaves, J., James, D., Millard, L., Pedrono, F. (2010) Sustainable $H_2$ gas production by photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry 216, 115-118. https://doi.org/10.1016/j.jphotochem.2010.06.022
  6. Bai, X.-F., Cao, Y., Wu, W. (2010) Photocatalytic decomposition of $H_2S$ to produce Hydrogen over CdS nanoparticles formed in HY-zeolite pore. Renewable Energy (Article in Press).
  7. Ballari, M.-M., Yu, Q.-L., Brouwers, H.-G. (2010) Experimental study of the NO and $NO_2S$ degradation by photocatalytically active concrete. Catalysis Today 161, 165-180.
  8. Bird, M.-G., Greim, H., Snyder, R., Rice, J.-M. (2005) International symposium: Recent advances in benzene toxicity. Chemico-Biological Interactions 153-154, 1-5. https://doi.org/10.1016/j.cbi.2005.03.004
  9. Blanco, J., Malato, S., Alarcón, D., Gernjak, W., Maldonado, M.-I. (2009). Review of feasible solar energy applications to water processes. Renewable and Sustainable Energy Reviews 13, 1437-1445. https://doi.org/10.1016/j.rser.2008.08.016
  10. Capaccioni, B., Taran, Y., Tassi, F., Vaselli, O., Mangani, G. (2004) Source conditions and degradation processes of light hydrocarbons in volcanic gases: an example from El Chichón volcano (Chiapas State, Mexico). Chemical Geology 206, 81-96. https://doi.org/10.1016/j.chemgeo.2004.01.011
  11. Chaiprapat, S., Mardthing, R., Kantachote, D., Karnchanawong, S. (2011) Removal of hydrogen sulfide by complete aerobic oxidation in acidic biofiltration. Process Biochemistry 46, 344-352. https://doi.org/10.1016/j.procbio.2010.09.007
  12. Cheng, Y.-W., Chan, R.-C.-Y., Wong, P.-K. (2007) Disinfection of Legionella pneumophila by photocatalytic oxidation. Water Research 41, 842-852. https://doi.org/10.1016/j.watres.2006.11.033
  13. Datta, C., Naidu, R., Yenkie, M.-K. (2004) Photo-oxidative degradation of synthetic organic pollutant p-nitrophenol. Journal of Scientific and Industrial Research 63, 518-521.
  14. Demeestere, K., Dewulf, J., Langenhove, H.-V. (2007) Heterogeneous photocatalysis as an advanced oxidation process for the abatement of chlorinated, monocyclic aromatic and sulfurous volatile organic compounds in air. Environmental Science and Technology 37, 489-538. https://doi.org/10.1080/10643380600966467
  15. Denny, F., Scott, J., Chiang, K., Teoh, W.-Y., Amal, R. (2007) Insight towards the role of platinum in the photocatalytic mineralization of organic compounds. Journal of Molecular Catalysis A: Chemical 263, 93-102. https://doi.org/10.1016/j.molcata.2006.08.031
  16. Devilliers, D. (2006) Semiconductor photocatalysis. Energia Centre for Applied Energy Research 17, 1-4.
  17. Edwards, R.-D., Jantunen, M.-J. (2001) Benzene exposure in Helsinki, Finland. Atmospheric Environment 35, 1411-1420. https://doi.org/10.1016/S1352-2310(00)00359-9
  18. Fu, X., Zeltner, W.-A., Anderson, M.-A. (1995) The gasphase photocatalytic mineralization of benzene on porous titania-based catalysts. Applied Catalysis B: Environmental 6, 209-224. https://doi.org/10.1016/0926-3373(95)00017-8
  19. Fujishima, A., Honda, K., Kikuchi, S. (1969) Photosensitized electrolytic oxidation on TiO2 semiconductor electrode. J Chem Soc Japan (Kogyo Kagaku Zasshi) 72, 108-109.
  20. Fujishima, A., Rao, N.-T., Tryk, A. (2000) $TiO_2S$ photocatalysts and diamond electrodes. Electrochimica Acta 45, 4683-4690. https://doi.org/10.1016/S0013-4686(00)00620-4
  21. Jo, W.-K., Kim, J.-T. (2009) Application of visible-light photocatalysis with nitrogen-doped or unmodified titanium dioxide for control of indoor-level volatile organic compounds. Journal of Hazardous Materials 164, 360-366. https://doi.org/10.1016/j.jhazmat.2008.08.033
  22. Juanru, H., Mingwei, L., Zhong, C. (2007) Advances in doping of titania photocatalytic catalysts. Industrial Catalysis 15, 1-4.
  23. Kataoka, H. (1996) Derivatization reactions for the determination of amines by gas chromatography. Journal of Chromatography 733, 19-34. https://doi.org/10.1016/0021-9673(95)00726-1
  24. Kourtidis, K., Kelesis, A., Petrakakis, M. (2008) Hydrogen sulfide ($H_2S$) in urban ambient air. Atmospheric Environment 42, 7476-7482. https://doi.org/10.1016/j.atmosenv.2008.05.066
  25. Lambert, T.-W., Goodwin, V.-M., Stefani, D., Strosher, L. (2006) Hydrogen sulfide ($H_2S$) and sour gas effects on the eye. Science of the Total Environment 367, 1-22. https://doi.org/10.1016/j.scitotenv.2006.01.034
  26. Lathasree, S., Nageswara Rao, A., SivaSankar, B., Sadasivam, V., Rengaraj, K. (2004) Heterogeneous photocatalytic mineralisation of phenols in aqueous solutions. Journal of Molecular Catalysis A: Chemical 223, 101-105. https://doi.org/10.1016/j.molcata.2003.08.032
  27. Latza, U., Gerdes, S., Baur, X. (2009) Effects of nitrogen dioxide on human health: Systematic review of experimental and epidemiological studies conducted between 2002 and 2006. International Journal of Hygiene and Environmental Health 212, 271-287. https://doi.org/10.1016/j.ijheh.2008.06.003
  28. Li, Y., Hwang, D.-S., Lee, N.-H., Kim, S.-J. (2005) Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst. Chemical Physics Letters 404, 25-29. https://doi.org/10.1016/j.cplett.2005.01.062
  29. Litter, M-I. (1999) Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems. Applied Catalysis B: Environmental 23, 89-114. https://doi.org/10.1016/S0926-3373(99)00069-7
  30. Liu, J.-H., Yang, R., Li, S.-M. (2006) Preparation and application of efficient $TiO_2$/ACFs photocatalyst. Journal of Environmental Sciences 18, 979-982. https://doi.org/10.1016/S1001-0742(06)60025-9
  31. Machado, L.-C.-R., Charles, B. (2006) Floating photocatalysts based on $TiO_2$ supported on high surface area exfoliated vermiculite for water decontamination. Catalysis Communications 7, 538-541. https://doi.org/10.1016/j.catcom.2005.10.020
  32. Martinez, L., Blanc, L., Nunn, P., Raviglione, M. (2008) Tuberculosis and air travel: WHO guidance in the era of drug-resistant TB. Travel Medicine and Infectious Disease 6, 177-181. https://doi.org/10.1016/j.tmaid.2007.10.004
  33. Mohseni, M. (2005) Gas phase trichloroethylene (TCE) photooxidation and by product:photolysis vs. titania/silica based photocatalysis. Chemosphere 59, 335-342. https://doi.org/10.1016/j.chemosphere.2004.10.054
  34. Nishikiori, H., Furukawa, M., Fujii, T. (2011) Degradation of trichloroethylene using highly adsorptive allophane $TiO_2$ nanocomposite. Applied Catalysis B: Environmental 102, 470-474. https://doi.org/10.1016/j.apcatb.2010.12.028
  35. Ohko, Y., Noguchi, H., Nakamura, Y., Negishi, N., Takeuch, K. (2009) Highly selective photocatalytic reduction of $NO_2$ in air to NO using $Cu^{2+}$ -loaded $TiO_2$ thin films. Journal of Photochemistry and Photobiology A: Chemistry 206, 27-31. https://doi.org/10.1016/j.jphotochem.2009.05.008
  36. Park, S.-E., Joo, H., Kang, J.-W. (2004) Effect of impurities in $TiO_2$ thin films on trichloroethylene conversion. Conversion of Solar Energy Materials and Solar Cells 83, 39-53. https://doi.org/10.1016/j.solmat.2004.02.012
  37. Pichat, P., Disdier, J., Van, H.-C., Mas, D., Goutailler, G., Gaysse, C. (2000). Purification/deodorization of indoor air and gaseous effluents by $TiO_2$ photocatalysis. Catalysis Today 63, 363-369. https://doi.org/10.1016/S0920-5861(00)00480-6
  38. Portela, R., Canela, M.-C., Sánchez, B., Marques, F.-C., Stumbo, A.-M., Tessinari, R.-F., Coronado, J.M., Suarez, S. (2008) $H_2S$ photodegradation by $TiO_2$/M-MCM-41 (M=Cr or Ce): Deactivation and by-product generation under UV-A and visible light. Applied Catalysis B: Environmental 84, 643-650. https://doi.org/10.1016/j.apcatb.2008.05.020
  39. Robert, D., Malato, S. (2002). Solar photocatalysis: a clean process for water detoxification. The Science of the Total Environment 291, 85-97. https://doi.org/10.1016/S0048-9697(01)01094-4
  40. Shan, A.-Y., Mohd, T.-I., Rashid, S.-A. (2010) Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: A review. Applied Catalysis A: General 389, 1-8. https://doi.org/10.1016/j.apcata.2010.08.053
  41. Sleiman, M., Conchon, P., Ferronato, C., Chovelon, J.-M. (2009) Photocatalytic oxidation of toluene at indoor air levels (ppbv): Towards a better assessment of conversion, reaction intermediates and mineralization. Applied Catalysis B: Environmental 86, 159-165. https://doi.org/10.1016/j.apcatb.2008.08.003
  42. Smith, J. (2010). The $TiO_2$ Group. University of Colorado. USA. (http://ruby.colorado.edu/-smyth/min/tio2.html)
  43. The Lancet (1904) Benzene a poisonous content of coal gas.163, 526-527.
  44. Vinu, R., Madras, G. (2010) Environmental remediation and photocatalysis. Journal of the Indian Institute of Science 90, 189-229.
  45. Vohra, A., Goswami, D.-Y., Deshpande, D.-A., Block, S.-S. (2006) Enhanced photocatalytic disinfection of indoor air. Applied Catalysis B: Environmental 64, 57-65. https://doi.org/10.1016/j.apcatb.2005.10.025
  46. Wang, K.-H., Jehng, J.-M., Hsieh, Y.-H., Chang, C. (2002) The reaction pathway for the heterogeneous photocatalysis of trichloroethylene in gas phase. Journal of Hazardous Materials 90, 63-75. https://doi.org/10.1016/S0304-3894(01)00331-4
  47. Wei, Z., Sun, J., Xie, Z., Liang, M., Chen, S. (2010) Removal of gaseous toluene by the combination of photocatalytic oxidation under complex light irradiation of UV and visible light and biological process. Journal of Hazardous Materials 177, 814-821. https://doi.org/10.1016/j.jhazmat.2009.12.106
  48. Weisel, C.-P. (2010) Benzene exposure: An overview of monitoring methods and their findings. Chemico-Biological Interactions 184, 58-66. https://doi.org/10.1016/j.cbi.2009.12.030
  49. Wilke, K., Breuer, H.-D. (1999) The influence of transition metal doping on the physical and photocatalytic properties of titania. Journal of Photochemistry and Photobiology A: Chemistry 121, 49-53. https://doi.org/10.1016/S1010-6030(98)00452-3
  50. Wu, Z., Wang, H., Liu, Y., Gu, Z. (2008) Photocatalytic oxidation of nitric oxide with immobilized titanium dioxide films synthesized by hydrothermal method. Journal of Hazardous Materials 151, 17-25. https://doi.org/10.1016/j.jhazmat.2007.05.050
  51. www.spacetoday.org/DeepSpace/Telescopes/GreatObservatories/Chandra/ChandraSpectrum.htm.
  52. Zhong, J., Lu, Y., Jiang, W.-D., Meng, Q-M., He, X.-Z., Li, J.-Z., Chen, Y.-Q. (2009) Characterization and photocatalytic property of Pd/$TiO_2$ with the oxidation of gaseous benzene. Journal of Hazardous Materials 168, 1632-1635. https://doi.org/10.1016/j.jhazmat.2009.02.158
  53. Zhong, J., Wang, J., Tao, L., Gong, M., Zhimin, L., Chen, L. (2007) Photocatalytic degradation of gaseous benzene over $TiO_2/Sr_2CeO_4$: Preparation and photocatalytic behavior of $TiO_2/Sr_2CeO_4$. Journal of Hazardous Materials 140, 200-204. https://doi.org/10.1016/j.jhazmat.2006.06.063
  54. Zou, L., Luo, Y., Hooper, M., Hu, E. (2006) Removal of VOCs by photocatalysis process using adsorption enhanced $TiO_2-SiO_2$ catalyst. Chemical Engineering and Processing 45, 959-964. https://doi.org/10.1016/j.cep.2006.01.014

Cited by

  1. Formation of intermediate band and low recombination rate in ZnO-BiVO4 heterostructured photocatalyst: Investigation based on experimental and theoretical studies vol.34, pp.2, 2011, https://doi.org/10.1007/s11814-016-0284-2
  2. Photocatalytic Removal of Harmful Algae in Natural Waters by Ag/AgCl@ZIF-8 Coating under Sunlight vol.9, pp.8, 2019, https://doi.org/10.3390/catal9080698
  3. Enhanced Visible Light Active WO 3 Thin Films Toward Air Purification: Effect of the Synthesis Conditions vol.13, pp.16, 2020, https://doi.org/10.3390/ma13163506
  4. The Use of TiO2 as a Disinfectant in Water Sanitation Applications vol.13, pp.12, 2011, https://doi.org/10.3390/w13121641