• Title/Summary/Keyword: photobioreactor

Search Result 101, Processing Time 0.03 seconds

Influence of Thickness of Optical Panel on the Growth Rate of Chlorella vulgaris in Photobioreactor (광생물반응기에서 도광판의 두께가 Chlorella vulgaris 증식에 미치는 영향)

  • Choi, Hee-Jeong;Lee, Seung-Mok
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.2
    • /
    • pp.270-275
    • /
    • 2013
  • The aim of this study was to investigate the efficiency of thickness of optical panel (OP) on the growth rate of Chlorella vulgaris. The size of Chlorella vulgaris (FC-16) was $3-8{\mu}m$, having round in shape. The cells of Chlorella vulgaris was cultured in the Jaworski's Medium with deionized water at $22^{\circ}C$ for 15 days. For this experiment, three OP samples were prepared to evaluate the efficiency of thickness of OP on the growth rate of Chlorella vulgaris; 4 mm OP with LED (Light Emitting Diode) (Run 1), 6 mm OP with LED (Run 2) and 8 mm with LED (Run 3). The diffuse rate was reached 86%, 91% and 92% for Run 1, Run 2 and Run 3, respectively. Average biomass of Run 2 and Run 3 were measured 11.18% higher than that of Run 1. However, the specific growth rate for all fractions were almost same. In addition, chlorophyll content per cell and cell volume were found to be slice difference between Run 2 and Run 3. Therefore, Run 2 has more effect on growth rate of biomass for Chlorella vulgaris than Run 1 and Run 3.

Efficiency of Nutrient Removal and Biomass Productivity in The Wastewater by Microalgae Membrane Bioreactor Process (Microalgae Membrane Bioreactor (MMBR) 공정에서 하수의 영양염류 제거와 바이오매스 생산성 효율)

  • Choi, Hee-Jeong
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.4
    • /
    • pp.386-393
    • /
    • 2014
  • The aim of this study was to investigate the nutrient removal and biomass productivity in the wastewater using MMBR (Microalgae Membrane Bioreactor). MMBR process was combined OPPBR (Optical Panel Photobioreactor) and MBR (Membrane bioreactor). The OPPBR and MBR were operated 3 days and 9h HRT (Hydraulic retention time), respectively, using microalgae as Chlorella vulgaris. The obtained result indicated that the biomass productivity of 0.498 g/L/d with light transmittance of 92% at a 305 mm depth in the OPPBR was achieved. The total consumption of BOD (Biochemical Oxygen Demand) and COD (Chemical Oxygen Demand) in the MMBR were found to be 97.56% and 96.06%, respectively. Additionally, the removal of TN, $NO_3-N$, TP and $PO_4-P$ were 94.94%, 91.04%, 99.54% and 93.06% in MMBR, respectively. These results indicated that the MMBR process was highly effective for COD, BOD and nutrient removal when compared to the separate OPPBR or MBR process. The MMBR process was effective for nutrient removal and biomass productivity and can be applied to treat wastewater in sewage treatment plant.

Optimal Culture Conditions for Marine Chlorella in a Vertical Tubular Photobioreactor System (해수산 Chlorella의 최적 배양 조건에 관한 연구)

  • LIM Jin-Young;CHO Man-Gi;HAN Bong-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.1
    • /
    • pp.139-142
    • /
    • 1998
  • To obtain informations for construction of a mass culture system, factors affecting on the specific growth rate of marine Chlorella sp. purchased from the Chungmu Laboratory of the South Sea Fisheries Institute, the National Fisheries Research and Development Agency were investigated using a vertical tubular photobioreactor (VT-PBR) system. Optimal temperature, illumination intensity, air- and $CO_{2-}$ flow rate for Chlorella sp. were $20^{\circ}C$, 6,000 lux, 0,56 vvm and 0.028 vvm, respectively.

  • PDF

Improvement of Unsaturated Fatty Acid Production from Porphyridium cruentum Using a Two-Phase Culture System in a Photobioreactor with Light-Emitting Diodes (LEDs)

  • Kim, So Hee;Lee, Ui Hun;Lee, Sang Baek;Jeong, Gwi-Taek;Kim, Sung-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.456-463
    • /
    • 2021
  • In this study, the culture conditions for Porphyridium cruentum were optimized to obtain the maximum biomass and lipid productions. The eicosapentaenoic acid content was increased by pH optimization. P. cruentum was cultured with modified F/2 medium in 14-L photobioreactors using a two-phase culture system, in which the green (520 nm) and red (625 nm) light-emitting diodes (LEDs) were used during the first and second phases for biomass production and lipid production, respectively. Various parameters, including aeration rate, light intensity, photoperiod, and pH were optimized. The maximum biomass concentration of 0.91 g dcw/l was obtained with an aeration rate of 0.75 vvm, a light intensity of 300 μmol m-2s-1, and a photoperiod of 24:0 h. The maximum lipid production of 51.8% (w/w) was obtained with a light intensity of 400 μmol m-2s-1 and a photoperiod of 18:6 h. Additionally, the eicosapentaenoic acid and unsaturated fatty acid contents reached 30.6% to 56.2% at pH 6.0.

Verification of a Relationship between Ultraviolet Radiation and Initial Microalgal Cell Density Using a Floating Marine Photobioreactor (부유형 해양 광생물반응기를 이용한 자외선과 초기 미세조류 접종 농도와의 상관관계 규명)

  • Kim, Z-Hun;Park, Hanwool;Jung, Seong-Gyun;Kim, Su-Kwon;Kim, Hee-Yun;Park, Yong Sung;Hong, Han Ma Roo;Lee, Choul-Gyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.7 no.2
    • /
    • pp.52-57
    • /
    • 2015
  • The purpose of this study was to investigate a relationship between ultraviolet radiation and initial cell density (ICD) of microalgae using a floating marine photobioreactor (PBR). To examine the effect of ultraviolet (UV) radiation in sunlight on biomass productivity as a function of ICD, 0.5-L floating PBRs covered with or without UV cut-off film were placed in an outdoor rectangular tank containing 200 L of water. At the lower ICDs, 0.01 and 0.05 g/L, biomass productivities in the PBRs without UV cut-off film decreased by $278{\pm}21%$ and $222{\pm}3%$ compared with those with the film, respectively. In contrast, the presence of UV cut-off film did not have a significant effect on biomass productivities at the higher ICDs, 0.25 and 1.25 g/L. When the differences in biomass productivity made by the UV cut-off film were plotted against the sum of cell projection area per light receiving area of the PBR, the results revealed that the inhibitory effect of UV on biomass productivity can be negligible when the sum of cell projection area is equal to the light receiving area of the PBR. These results show that photoinhibition caused by UV radiation could be eliminated via operating the PBR with a proper ICD.

Carbon Dioxide Fixation using Spirulina Platensis NIES 39 in Polyethylene Bag (Spirulina Platensis NIES 39를 이용한 Polyethylene Bag 반응기에서의 이산화탄소 고정화)

  • Kim, Young-Min;Kim, Ji-Youn;Lee, Sung-Mok;Ha, Jong-Myung;Kwon, Tae-Ho;Lee, Jae-Hwa
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.272-277
    • /
    • 2010
  • To replace current expensive photobioreactor, this study was conducted to develop low-cost photobioreactor made of polyethylene bag. In previous study, optimal culture conditions of Spirulina platensis NIES 39 have been established, and based on these, the study of biological carbon dioxide fixation has been conducted. The maximum growth was the biomass 2.677 g/L at conditions of 10% $CO_2$, 0.1 vvm. It was shown that $F_{CO_2}$ was 4.056 g $CO_2$/L and $R_{CO_2}$ was 0.312 g $CO_2$/L/day. But, compared with the data at conditions of 5% $CO_2$, 0.1 vvm, $FE_{CO_2}$ was shown 52.372% which is half of it. Regarding the effect of $CO_2$ following illumination, the growth revealed that the input conditions, for 10 min per 3 h, were excellent in the light. $CO_2$ in absent light. $CO_2$ concentration and flow rate were 5% $CO_2$, 0.1 vvm, respectively. Finally, the addition of $CO_2$ was ineffective in the absence of light.

Stability of Phycocyanin and Spectral Characteristic of Phycobilins from Spirulina platensis (Spirulina platensis가 생산하는 phycobilins의 spectral 특성 및 phycocyanin 색소의 안정성)

  • JOO Dong Sik;CHO Soon Yeong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.5
    • /
    • pp.482-488
    • /
    • 2000
  • The stability of c-phycocyanin and spectral property of phycobilins obtained from Spirulina platensis cultured by helical tubular photobioreactor were determined. The c-phycocyanin with maximal absorption of 622 nm and allophycocyanin with maximal absorption of 652 nm fractions were isolated from phycobilins by Sephadex G-100 gel chromatoBraphy, The yield of partially purified c-phycocyanin was about $1.5{\%}$ to dried biomass. The stability of c-phycocyanin in the range of $pH 4{\~}9$ was high but c-phvcocvanin was unstable over pH 10. The c-phycocyanin was stable at temperatures below $40^{\circ}C$, and at light intensity below 15000 lux. And metal ions were not affect the stability of c-phycocyanin.

  • PDF

Effect of Photo Bioreactor with Optical Panel on the Growth Rate of Chlorella vulgaris (도광판 삽입 반응기가 Chlorella vulgaris 증식에 미치는 영향)

  • Choi, Hee-Jeong;Lee, Seung-Mok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.7
    • /
    • pp.467-472
    • /
    • 2012
  • The aim of this study was to investigate the efficiency of optical panel (OP) on the growth rate of Chlorella vulgaris (C. vulgaris). The size of C. vulgaris (FC-16) was 3~$8{\mu}m$, having round in shape. The cells of C. vulgaris was cultured in the Jaworski's Medium with deionized water at $22^{\circ}C$ for 15 days. For this experiment, three light samples were prepared to evaluate the efficiency of OP on the growth rate of C. vulgaris; OP with LED (Light Emitting Diode) (Run 1), Fluorescent light (Run 2) and LED (Run 3). The specific growth rate of C. vulgaris for Run 1 was found to be 14 times and 5 times faster than Run 2 and Run 3, respectively. In addition, the average biomass of C. vulgaris for Run 1 was measured 11.79 g/L in 11 days. This means that the biomass for Run 1 was reached 30 times and 6.5 times higher than Run 2 and Run 3, respectively. This may be due to the fact the OP was increased the light uniformity and hindered the shading effects in photobioreactor. Therefore, the growth rate of biomass in photobioreactor with OP is compared better than the without OP used other photobioreactor.

Calculation of Light Penetration Depth in Photobioreactors

  • Lee, Choul-Gyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.4 no.1
    • /
    • pp.78-81
    • /
    • 1999
  • Light penetration depth in high-density Chlorella cultures can be successfully estimated by Beer-Lambert's law. The efficiency of light energy absorption algal cultures was so high that algal cells near the illuminating surface shade the cells deep in the culture. To exploit the potential of high-density algal cultures, this mutual shading should be eliminated or minimized. However, providing more light energy will not ease the situation and it will simply drop the overall light utilization efficiency.

  • PDF