Browse > Article
http://dx.doi.org/10.15681/KSWE.2014.30.4.386

Efficiency of Nutrient Removal and Biomass Productivity in The Wastewater by Microalgae Membrane Bioreactor Process  

Choi, Hee-Jeong (Department of Health and Environment, Kwandong University)
Publication Information
Abstract
The aim of this study was to investigate the nutrient removal and biomass productivity in the wastewater using MMBR (Microalgae Membrane Bioreactor). MMBR process was combined OPPBR (Optical Panel Photobioreactor) and MBR (Membrane bioreactor). The OPPBR and MBR were operated 3 days and 9h HRT (Hydraulic retention time), respectively, using microalgae as Chlorella vulgaris. The obtained result indicated that the biomass productivity of 0.498 g/L/d with light transmittance of 92% at a 305 mm depth in the OPPBR was achieved. The total consumption of BOD (Biochemical Oxygen Demand) and COD (Chemical Oxygen Demand) in the MMBR were found to be 97.56% and 96.06%, respectively. Additionally, the removal of TN, $NO_3-N$, TP and $PO_4-P$ were 94.94%, 91.04%, 99.54% and 93.06% in MMBR, respectively. These results indicated that the MMBR process was highly effective for COD, BOD and nutrient removal when compared to the separate OPPBR or MBR process. The MMBR process was effective for nutrient removal and biomass productivity and can be applied to treat wastewater in sewage treatment plant.
Keywords
Biomass; Microalgae Membrane Bioreactor (MMBR); Nutrient removal; Wastewater; Optical panel photobioreactor;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Abbegglen, C., Ospelt, M., and Siegrist, H. (2008). Biological Nutrient Removal in a Small-Scale MBR Treating Household Wastewater, Water Research, 42(1-2), pp. 338-346.   DOI   ScienceOn
2 Abdel-Raouf, N., Al-Homaidan, A. A., and Ibraheem, I. B. M. (2012). Microalgae and Wastewater Treatment, Saudi Journal of Biological Science, 19, pp. 257-275.   DOI   ScienceOn
3 Adov, S. S., Lee, D. J., Show, K. Y., and Tay, J. H. (2008). Aerobic Granular Sludge: Recent Advances, Biotechnology Advances, 26(5), pp. 411-423.   DOI   ScienceOn
4 Ahn, C. Y., Lee, J. Y., and Oh, H. M. (2013). Control of Microalgal Growth and Competition by N:P Ratio Manipulation, Korean Journal of Environmental Biology, 31(2), pp. 61-68. [Korean Literature]   과학기술학회마을   DOI   ScienceOn
5 Boelee, N. C., Temmink, H., Janssen, M., Buisman, C. J. N., and Wijffels, R. H. (2012). Scenario Analysis of Nutrient Removal from Municipal Wastewater by Microalgae Biofilms, Water, 4, pp. 460-473.   DOI
6 Boonchai, R., Seo, G. T., Park, D. R., and Seong, C. Y. (2012). Microalgae Photobioreactor for Nitrogen and Phosphorus Removal from Wastewater of Sewage Treatment Plant, International Journal of Bioscience, Biochemistry and Bioinformatics, 2(6), pp. 407-410.
7 Borghei, S. M., Sharbatmaleki, M., Pourrezaie, P., and Borghei, G. (2008). Kinetic of Organic Removal in Fixed-Bed Aerobic Biological Reactor, Bioresouce Technology, 99(5), pp. 1118-1124.   DOI   ScienceOn
8 Chen, C. Y., Yeh, K. L., Aisyah, R., Lee, D. J., and Chang, J. S. (2011). Cultivation, Photobioreactor Design and Harvesting of Microalgae for Biodiesel Production: A critical review, Bioresource Technology, 102(1), pp. 71-81.   DOI   ScienceOn
9 Choi, H. J. and Lee, S. M. (2012). Effect of Photobioreactor with Optical Panel on the Growth Rate of Chlorella vulgaris, Korean Society of Environmental Engineering, 34(7), pp. 467-472. [Korean Literature]   DOI   ScienceOn
10 Choi, H. J., Lee, A. H., and Lee, S. M. (2012). Comparison between a Moving Bed Bioreactor and a Fixed Bed Bioreactor for Biological Phosphate Removal and Denitrification, Water Science and Technology, 65(10), pp. 1834-1838.   DOI
11 Colak, O. and Kaya, Z. (1988). A Study on the Possibilities of Biological Wastewater Treatment Using Algae, Doga: Turkish Journal of biology, 12(1), pp. 18-29.
12 Choi, H. J., Lee, J. M., and Lee, S. M. (2013). A Novel Optical Panel Photobiorector for Cultivation of Microalgae, Water Science and Technology, 67(11), pp. 2543-2548.   DOI
13 Choi, H. J. and Lee, S. M. (2011). Effect of Temperature, Light Intensity and pH on the Growth Rate of Chlorella vulgaris, Korean Society of Environmental Engineering, 33(7), pp. 511-515. [Korean Literature]   과학기술학회마을   DOI   ScienceOn
14 Choi, H. J. and Lee, S. M. (2014). Effect of Optical Panel Thickness for Nutrient Removal and Cultivation of Microalgae in the Photobioreactor, Bioprocess and Biosystems Engineering, 37(4), pp. 697-705.   DOI   ScienceOn
15 Grobbelaar, J. U. (2000). Physiological and Technological Considerations for Optimizing Mass Algal Cultures, Journal of Applied Phycology, 12(3-5), pp. 201-206.   DOI   ScienceOn
16 Haag, A. L. (2007). Algae Bloom Again, Nature, 447(7144), pp. 520-521.   DOI   ScienceOn
17 Hsieh, C. H. and Wu, W. T. (2009). A Novel Photpbioreactor with Transparent Rectangular Chambers for Cultivation of Microalgae, Biochemical Engineering Journal, 46(3), pp. 300-305.   DOI   ScienceOn
18 Jin, E., Polle, J. E. W., Lee, H. K., Hyun, S. M., and Chang, M. (2003). Xanthophylls in Microalgae: From Biosynthesis to Biotechnological Mass Production and Application, Journal of Microbiology and Biotechnoogy, 13(2), pp. 165-174.   과학기술학회마을
19 Klausmeier, C. A., Litchman, E., Daufresne, T., and Levin, S. A. (2008). Phytoplankton Stoichiometry, Ecological Research, 23, pp. 479-485.   DOI
20 Kang, Z., Kim, B. H., Shim, S. Y., Oh, H. M., and Kim, H. S. (2012). Municipal Wastewater Treatment and Microbial Diversity Analysis of Microalgal Mini Raceway Open Pond, The Korean Journal of Microbiology, 48(3), pp. 192-199.   과학기술학회마을   DOI   ScienceOn
21 Ogbonna, J. C. and Tanaka, H. (2000). Light Requirement and Photosynthetic Cell Cultivation-Development of Processes for Efficient Light Utilization in Photobioreactors, Journal of Applied Phycology, 12(3-5), pp. 207-218.   DOI   ScienceOn
22 Klausmeier, C. A., Litchman, E., and Simon, A. L. (2004). Phytoplankton Growth and Stoichiometry under Multiple Nutrient Limitations, Limnology and Oceanography, 49(4), pp. 1463-1470.   DOI
23 Masojidek, J. and Torzillo, G. (2008). Mass Cultivation of Freshwater Microalgae; In Encyclopedia of Ecology, Academic Press, Oxford, UK, pp. 2226-2235.
24 Moreno-Garrido, I. (2008). Microalgae Immobilization: Current Techniques and Uses, Bioresource Technology, 99(10), pp. 3949-3964.   DOI   ScienceOn
25 Rusten, B., Eikebrokk, B., and Ulgenes, Y. (2006). Design and Operations of The Kindness Moving Bed Biofilm Reactors, Aquacultural Engineering, 34(3), pp. 322-331.   DOI   ScienceOn
26 Schindler, D. W. (2012). The Dilemma of Controlling Cultural Eutrophication of Lake, Proceedings of the Royal Society B; Biological Sciences, 279 (1746), pp. 4322-4333.   DOI
27 Seviour, R. J., Mino, T., and Onuki, M. (2003). The Microbiology of Biological Phosphorus Removal in Activated Sludge Systems, FEMS microbiology reviews, 27(1), pp. 99-127.   DOI   ScienceOn
28 Singh, G. and Thomas, P. B. (2012). Nutrient Removal from Membrane Reactor Permeate Using Microalgae and in a Microalgae Membrane Reactor, Bioresource Technology, 117, pp. 80-85.   DOI   ScienceOn
29 Shi, J., Podola, B., and Melkonian, M. (2007). Removal of Nitrogen and Phosphorus from Wastewater Using Microalgae Immobilized on Twin Layers: An Experimental Study, Journal of Applied Phycology, 19(5), pp. 417-423.   DOI
30 Sierra, E. Acien, F. G., Fernandez, J. L., Garcia, C., Gonzalez, C., and Molina, E. (2008). Characterization of a Flat Plate Photobioreactor for the Production of Microalgae, Chemical Engineering Journal, 138(1-3), pp. 136-147.   DOI   ScienceOn
31 Wang, C., Li, J., Wang, B., and Zhang, G. (2006). Development of an Empirical Model for Domestic Wastewater Treatment by Biological Aerated Filter, Process Biochemisrty, 41(4), pp. 778-782.   DOI   ScienceOn
32 Wang, C., Yu, X., Lv, H., and Yang, J. (2012). Nitrogen and Phosphorus Removal from Municipal Wastewater by Green Alga Chlorella sp., Journal of Environmental Biology, 34(2), pp. 421-425.
33 Wijffels, R. H. and Barbosa, M. J. (2010). An Outlook on Microalgal Biofuels, Science, 329(5993), 796-799.   DOI   ScienceOn
34 Woertz, I., Fulton, L., and Lundquist, T. (2009). Nutrient Removal and Greenhouse Gas Abatement with $CO_2$ Supplemented Algal High Rate Ponds. Water Environment Federation, October 12-14, Orlando, Florida.
35 Wu, Z. and Shi, X. (2007). Optimization for High-Density Cultivation of Heterotrophic Chlorella Based on a Hybrid Neural Network Model, Letters in Applied Microbiology, 44(1), pp. 13-18.   DOI   ScienceOn