DOI QR코드

DOI QR Code

Effect of Photo Bioreactor with Optical Panel on the Growth Rate of Chlorella vulgaris

도광판 삽입 반응기가 Chlorella vulgaris 증식에 미치는 영향

  • Choi, Hee-Jeong (Department of Environmental Engineering, Kwandong University) ;
  • Lee, Seung-Mok (Department of Environmental Engineering, Kwandong University)
  • Received : 2012.05.23
  • Accepted : 2012.07.27
  • Published : 2012.07.30

Abstract

The aim of this study was to investigate the efficiency of optical panel (OP) on the growth rate of Chlorella vulgaris (C. vulgaris). The size of C. vulgaris (FC-16) was 3~$8{\mu}m$, having round in shape. The cells of C. vulgaris was cultured in the Jaworski's Medium with deionized water at $22^{\circ}C$ for 15 days. For this experiment, three light samples were prepared to evaluate the efficiency of OP on the growth rate of C. vulgaris; OP with LED (Light Emitting Diode) (Run 1), Fluorescent light (Run 2) and LED (Run 3). The specific growth rate of C. vulgaris for Run 1 was found to be 14 times and 5 times faster than Run 2 and Run 3, respectively. In addition, the average biomass of C. vulgaris for Run 1 was measured 11.79 g/L in 11 days. This means that the biomass for Run 1 was reached 30 times and 6.5 times higher than Run 2 and Run 3, respectively. This may be due to the fact the OP was increased the light uniformity and hindered the shading effects in photobioreactor. Therefore, the growth rate of biomass in photobioreactor with OP is compared better than the without OP used other photobioreactor.

본 연구는 도광판이 Chlorella vulgaris (C. vulgaris)의 증식률에 미치는 영향을 알아보고자 하였다. 각 조건에서의 효율을 평가하기 위하여 C. vulgaris (FC-16) (3~$8{\mu}m$)를 Jaworski's Medium에 온도 $22^{\circ}C$에서 15일 증식시킨 뒤, 광원을 도광판 + LED (Run 1), 형광등 (Run 2) 그리고 LED (Run 3) 로 나누어 바이오매스의 증식률에 미치는 영향을 실험하였다. 실험결과, C. vulgaris의 비증식속도는 Run 1이 Run 2에 비해 14배 그리고 Run 3에 비해 5배 높은 비증식속도를 나타내었다. 11일을 증식시킨 후 C. vulgaris의 평균바이오매스를 비교한 결과 Run 1은 11.79 g/L를 나타내어 Run 2에 비해 30배 그리고 Run 3에 비해 6.5배나 많은 바이오매스를 나타내었다. 도광판을 사용할 경우 빛의 균일한 분포를 증가시키고 그림자 효과를 저해시켜 바이오매스의 증식률이 도광판을 사용하지 않은 반응기에 비해 월등히 높았음을 알 수 있었다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Haag, A. L., "Algae bloom again," Nature, 31(447), 520-521 (2007).
  2. Masojidek, J. and Torzillo, G., "Mass cultivation of freshwater microalgae," Encyclopedia Ecol. Acad. Press, Oxsford, UK(2008).
  3. Wu, Z. and Shi, X., "Optimization for high-density cultivation of heterotrophic Chlorella based on a hybrid neural network model," Lett. Appl. Microbiol., 44(1), 13-18(2007). https://doi.org/10.1111/j.1472-765X.2006.02038.x
  4. Lee, Y. K., "Micoalgal mass culture systems and methods: Their limitation and potential," J. Appl. Phycol., 13(4), 307-315(2001). https://doi.org/10.1023/A:1017560006941
  5. Van Gerpen, J., "Biodiesel processing and production," Fuel Proc. Technol., 86, 1097-1107(2005). https://doi.org/10.1016/j.fuproc.2004.11.005
  6. Moreno-Garrido, I., "Microalgae immobilization: current techniques and uses," Bioresour. Technol., 99(10), 3949-3964 (2008). https://doi.org/10.1016/j.biortech.2007.05.040
  7. Luz, E., de-Basham, A. and Yoav, B., "Immobilized microalgae for removing pollutants: Review of practical aspects," Bioresour. Technol., 101(6), 1611-1627(2010). https://doi.org/10.1016/j.biortech.2009.09.043
  8. Chisti, Y., "Biodiesel from microalgae," Biotechnol. Adv., 25, 294-306(2007). https://doi.org/10.1016/j.biotechadv.2007.02.001
  9. Kim, J., Lingaraju, B. P., Rheaume, R., Lee, J. Y. and Siddiqui, K. F., "Removal of ammonium from wastewater effluent by Chlorella vulgaris," Tsinghua Sci. Technol., 15(4), 391-396(2010). https://doi.org/10.1016/S1007-0214(10)70078-X
  10. Kang, C. D., An, J. Y., Park, T. H. and Sim, S. J., "Astaxanthin biosynthesis from simultaneous N and P uptake by the green alga Haematococcus pluvialis in primary-treated wastewater," Biochem. Eng., 31(3), 234-238(2006). https://doi.org/10.1016/j.bej.2006.08.002
  11. Sierra, E. Acien, Fernandez, J. M. Garcia, Gonzalez, C. and Molina, E., "Characterization of a flat plate photobioreactor for the production of microalgae," Chem. Eng. J., 138(1-3), 136-147(2008). https://doi.org/10.1016/j.cej.2007.06.004
  12. Munoz, R. and Guieysse B., "Algal-bacterial processes for the treatment of hazardous contaminants: a review," Water Res., 40(15), 2799-2815(2006). https://doi.org/10.1016/j.watres.2006.06.011
  13. De-Bashan, L. E., Moreno, M., Hernandez, J. P. and Bashan, Y., "Removal of ammonium and phosphorus ions from synthetic wastewater by microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense," Water Res., 36, 2941-2948(2002). https://doi.org/10.1016/S0043-1354(01)00522-X
  14. Richmond, A. and Cheng-Wu, Z., "Optimization of a flat plate glass reactor for mass production of Nannochloropsis sp.," J. Biotechnol., 85(3), 259-269(2001). https://doi.org/10.1016/S0168-1656(00)00353-9
  15. Alain, D., Jean, D., Francoise, P. and Lhoussaine, B., "Growth rate four freshwater algae in relation to light and temperature," Hydrobiol., 207(1), 221-226(1990). https://doi.org/10.1007/BF00041459
  16. Sakai, N., Sakamoto, Y., Kishimoto, N., Chihara, M. and Karube, I., "Chlorella strains from hot springs tolerant to high temperature and high $CO_2$," Energy Conv. Manage., 36(6-9), 693-696(1995). https://doi.org/10.1016/0196-8904(95)00100-R
  17. Mayo, A. W. and Noike, T. "Effects of temperature and pH on the growth of heterotrophic bacteria in waste stabilization pond," Water Res., 30(2), 447-455(1996). https://doi.org/10.1016/0043-1354(95)00150-6
  18. Ogbonna, J. C. and Tanaka, H., "Light requirement and photosynthetic cell cultivation-development of processes for efficient light utilization in photobioreactors," J. Appl. Phycol., 12(3-5), 207-218(2000). https://doi.org/10.1023/A:1008194627239
  19. Lee, K. and Lee, C. G., "Effect of light/dark cycles on wastewater treatments by microalgae," Biotechnol. Bioproc. Eng., 6, 194-199(2001). https://doi.org/10.1007/BF02932550
  20. Chen, C. Y., Yeh, K. L., Aisyah, R., Lee, D. J. and Chang, J. S., "Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review," Bioresour. Technol., 102(1), 71-81(2011). https://doi.org/10.1016/j.biortech.2010.06.159
  21. Ugwu, C. U., Aoyagi, H. and Uchiyama, H., "Photobioreactors for mass cultivation of algae," Bioresour. Technol., 99 (10), 4021-4028(2008). https://doi.org/10.1016/j.biortech.2007.01.046
  22. Zhang, K., Kurano, N. and Miyachi, S., "Optimized aeration by carbon dioxide gas for microalgal production and mass transfer characterization in a vertical flat-plate photobioreactor," Bioproc. Biosys. Bioeng., 25(2), 97-101(2002). https://doi.org/10.1007/s00449-002-0284-y
  23. 이정호, 남기봉, 고재현, 김중현, "dpt지형 LED 백라이트의 균일도 향상을 위한 도광판의 광구조 최적화," Kor. J. Opt. Photonics, 21(2), 61-68(2010). https://doi.org/10.3807/KJOP.2010.21.2.061
  24. Papazi, A., Markridis, P., Divanach, P. and Kotzabasis, K., "Bioenergetic changes in the microalgal photosynthetic apparatus by extremely high $CO_2$ concentrations induce an intense biomass production," Physiol. Plant., 132(3), 338-349 (2008). https://doi.org/10.1111/j.1399-3054.2007.01015.x
  25. Grobbelaar, J. U., "Physiological and technological considerations for optimizing mass algal cultures," J. Appl. Phyco., 12 (3-5), 201-206(2000). https://doi.org/10.1023/A:1008155125844
  26. 최희정, 이승목, "온도, 광세기 및 pH에 따른 Chlorella vulgaris 증식률," 대한환경공학회지, 33(7), 511-515(2011).
  27. Munoz, R., Rolvering, C., Guieysse, B. and Mattiasson, B., "Photosynthetically oxygenated acetonitrile biodegradation by an algal-bacterial microcosm: a pilot scale study," Water Sci. Technol., 51(12), 261-265(2005b).
  28. Valderrama, L. T., Del Campo, C. M., Rodriguez, C. M., de- Bashan, L.E. and Bashan, Y., "Treatment of recalcitrant wastewater from ethanol and citric and production using the microalga Chlorella vulgaris and the macrophyte Lemna minuscula," Water Res., 36, 4185-4162(2002). https://doi.org/10.1016/S0043-1354(02)00143-4
  29. Azov, Y. and Goldman, J. C., "Free ammonia inhabitation of algal photosynthesis in intensive cultures," Appl. Environ. Microbiol., 43(4), 735-739(1982).
  30. Tadesse, I., Green, F. B. and Puhakka, J. A., "Seasonal and diurnal variations of temperatures, pH and dissolved oxygen in advanced integrated wastewater pond system treating tan nery effluent," Water Res., 38, 645-654(2004). https://doi.org/10.1016/j.watres.2003.10.006
  31. Takano, H., Takeyama, H., Nakamura, N., Sode, K., Butgess, J. G., Manabe, E., Hirano, M. and Matsunaga, T., "$CO_2$ removal by high-density culture of a marine cyanobacterium Synechococcus sp. using an improved photobioreactor employing light diffusing optical fibers," Appl. Biochem. Biotechnol., 34/35(1), 449-458(1992). https://doi.org/10.1007/BF02920568
  32. 이태윤, 최보람, 이제근, 임준혁, "발광다이오드를 이용한 클로렐라 배양 연구," 대한환경공학회지, 33(8), (2011).
  33. Ral, L. C., Kumar, H. D., Mohn, F. H. and Soeder, C. J., "Services of algae the environment," J. Microbiol. Biotechnol., 10, 119-136(2000).
  34. Jin, E., Polle, J. E. W., Lee, H. K., Hyun, S. M. and Chang, M., "Xanthophylls in microalgae: From biosynthesis to biotechnological mass production and application," J. Microbiol. Biotechnol., 13(2), 165-174(2003).
  35. Suh, I. S. and Lee, C. G., "Photobioreactor engineering; Design and performance," Biotechnol. Bioproc. Eng., 8(6), 313-321(2003). https://doi.org/10.1007/BF02949274
  36. Hu, G., Kurano, N., Kawachi, M., Iwasaki, I. and Miyachi, S., "Ultrahigh-cell-density culture of a marine green alga Chlorococcum littorale in a flat-plate photobioreactor," Appl. Microbiol. Biotechnol., 49(6), 655-662(1998). https://doi.org/10.1007/s002530051228
  37. Hsieh, C. H. and Wu, W. T., "A novel photpbioreactor with transparent rectangular chambers for cultivation of microalgae," Biochem. Eng. J., 46(3), 300-305(2009). https://doi.org/10.1016/j.bej.2009.06.004
  38. Lee, E. T. Y. and Bazin, M. J., "A laboratory scale air-lift helical photobioreactor to increase biomass output rate of photosynthetic algal cultures," New Phytol., 116, 331-335 (1990). https://doi.org/10.1111/j.1469-8137.1990.tb04722.x
  39. Torzillo, G., Carlozzi, P., Pushparaj, B., Montaini, E. and Materassi, R., "A two-plane tubular photobioreactor for outdoor culture of Spirulina," Biotechnol. Bioeng., 42(7), 891-898(1993). https://doi.org/10.1002/bit.260420714
  40. Treat, W. J., Castillion, J. and Soltes, E. J., "Photobioreactor culture of photosynthetic soybean cells: Growth and biomass characteristics," Appl. Biochem. Biotechnol., 24/25(1), 497-510(1990). https://doi.org/10.1007/BF02920273
  41. Javanmardian, M. and Palsson, B. O., "High-density photoautotrophic algal cultures: design, construction, and operation of a novel photobioreactor system," Biotechnol. Bioeng., 38 (10), 1182-1189(1991). https://doi.org/10.1002/bit.260381010

Cited by

  1. Effect of Optical Panal Distances on the Growth Rate of Chlorella vulgaris in a Photobioreactor vol.36, pp.3, 2014, https://doi.org/10.4491/KSEE.2014.36.3.214