• Title/Summary/Keyword: phenanthrene

Search Result 275, Processing Time 0.021 seconds

Removal of Phenanthrene by Electrokinetic-Fenton Process in a 2-dimensional Soil System (동전기-펜턴 공정을 이용한 2차원 토양 정화장치에서의 phenanthrene 제거)

  • Park Ji-Yeon;Kim Sang-Joon;Lee You-Jin;Yang Ji-Won
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.5
    • /
    • pp.11-17
    • /
    • 2005
  • Characteristics of phenanthrene removal in the Electrokinetic (EK)-Fenton process were investigated in a 2-dimensional test cell in a viewpoint of the effect of gravity and electrosmotic flow (EOF). When the constant voltage of 100 V was applied to this system, the current decreased from 1,000 to 290 mA after 28 days, because soil resistance increased due to the exhaustion of ions in soil by electroosmosis and electromigration. Accumulated EOF in two cathode reservoirs was 10.3 L and the EOF rate was kept constant for 28 days. At the end of operation, the concentration of phenanthrene was observed to be very low near the anode and increased in the cathode region because hydrogen peroxide was supplied from anode to cathode region following the direction of EOP. Additionally, the concentration of phenanthrene decreased at the bottom of the test cell because the electrolyte solution containing hydrogen peroxide was largely transported toward the bottom due to a low capillary action in the soil with high porosity. Average removal efficiency of phenanthrene by EK-Fenton process was 81.4% for 28 days. In-situ EK-Fenton process would overcome the limitations of conventional remediation technologies and effectively remediate the contaminated sites.

Influence of Acetate on the Removal of Phenanthrene from Contaminated Soil using Fenton Reaction (Fenton Reaction을 이용한 Phenanthrene 오염 토양 처리에서 Acetate의 영향)

  • Seong, Jo-Seph;Park, Joo-Yang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.5
    • /
    • pp.352-357
    • /
    • 2009
  • Due to rapid consumption of hydrogen peroxide, large amount of hydrogen peroxide is required when Fenton reaction is applied to the contaminated soil. In this study, acetate was employed as a ligand of $Fe^{2+}$ to enhance the efficiency of removal of phenanthrene by securing the stability of hydrogen peroxide. 0.5 ${\sim}$ 3 times of acetate (2${\sim}$12mM) was added to compare with molar concentration of $Fe^{2+}$. Low initial concentration of hydrogen peroxide was 0.7% to eliminate side effect of removal efficiency. The results showed that hydrogen peroxide lifetime was lasted up to 72 hours, or more than 50 times of normal lifetime. Phenanthrene removal efficiency was improved up to 70% due to stabilized hydrogen peroxide. Ferrous ion was oxidized to ferric ion and oxidation-reduction was repeated during the reaction. Finally ferric ion was reduced to ferrous by $HO_2$. It was confirmed that, due to the influence of hydrogen peroxide, pH was acid region and it remained at the range of 4 ${\sim}$ 5 when 8 mM or more of acetate was added. Acetate which was used as the ligand of Fe was also decomposed by Fenton reaction. The decomposition time of acetate was slower than phenanthrene. Therefore, it was able to come to the conclusion that phenanthrene was superior to acetate at the competition for decomposition. Through the results of this study, it was able to identify the possibilities to improve the efficiency of Fenton reaction in the contaminated soil and its economic feasibility, and to move to more realistic technique through research expanded to neutral pH region.

A Study about Development of Hydrogen Peroxide Stabilizer in Modified Fenton Reaction Using Anion Surfactant (음이온 계면활성제를 사용한 modified Fenton 반응의 과수안정제 개발에 관한 연구)

  • Kim, Han Ki;Park, Kang Su;Kim, Jeong Hwan;Park, Joo Yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4B
    • /
    • pp.377-382
    • /
    • 2011
  • In this study, hydrogen peroxide is stabilized in modified Fenton reaction to improve the soil remediation. Phenanthrene, which is the typical compound in PAHs, was spiked into soil samples to copy the original contaminated site. Anionic surfactant, SDS (Sodium dodecyl sulfate) was used for hydrogen peroxide stabilizer. 4 mM of Fe(II), 5~50 mM of SDS and 102.897 mM of $H_2O_2$ was injected into soil samples which is contaminated by 125 mg/kg of phenanthrene to analyze decomposition rate of phenanthrene in modified Fenton reaction. In condition which SDS was injected 30 mM, decomposition rate of phenanthrene has best efficiency as 95% and in condition which SDS was injected over 30 mM, decomposition rate is lower than SDS 30 mM because SDS enacted as scavenger in the system. Results which assess the change of hydrogen peroxide concentration after injecting hydrogen peroxide stabilizer showed that hydrogen peroxide concentration was 14.6995 mM so that is stabilized at Fe(II) 2 mM condition in 48 hours. On the other hand, hydrogen peroxide is not stable in Fe(III) condition. SDS concentration was fixed and iron concentration was changed 2~8 mM to find out optimize proportion between iron concentration and SDS concentration in modified Fenton reaction. Consequentially, in condition of which Fe(II) 4 mM and SDS 30 mM, reaction has the highest removal rate as 95%.

Phenanthrene 오염토양의 정화를 위한 동전기-생물학적복원기술의 적용과 전류밀도의 영향

  • 김상준;박지연;이유진;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.181-185
    • /
    • 2004
  • Electrokinetic bioremediation was conducted on phenanthrene-contaminated soil to study the effects of soil temperature and pH on microbial population and removal efficiency at different current densities from 0.63 to 3.13 mA cm$^{-2}$ . Microorganism used in the biodegradation of phenanthrene was Sphingomonas sp. 3Y, which was isolated from a diesel-contaminated site. The microorganism was successfully penetrated into the contaminated soil by electrokinetic phenomena and the highest microbial population was observed in the middle region of soil specimen where soil pH was near neutral. Therefore, phenanthrene removal occurred mainly at anode and middle parts of soil specimen due to a relatively high microbial population. Also, the highest removal efficiency of 68.8% was obtained at 1.88 mA cm$^{-2}$ while low degradation was detected at 3.13 mA cm$^{-2}$ . It was presumably because the soil temperature at 1.88 mAcm$^{-2}$ was close to the appropriate temperature of about 30'c while the temperature increase to above 45$^{\circ}C$ at 3.13 mA cm$^{-2}$ inhibited the microbial activity severely.

  • PDF

A DFT Study for the Reaction Pathway(s) of Polycyclic Aromatic Hydrocarbons I: Phenanthrene Degradation with two OH Radicals (다고리 방향족 탄화수소의 반응 경로에 대한 DFT 연구 I: 2개의 OH 라디칼에 의한 페난트렌의 분해 반응)

  • Lee, Min-Joo;Lee, Byung-Dae
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.1
    • /
    • pp.9-14
    • /
    • 2021
  • In this study, the DFT calculation was performed using the B3LYP/6-31G(d,p) basis sets for the reaction process in which phenanthrene decomposes due to the chain reaction of two OH radicals on phenanthrene in the gaseous state of 298 K at 1 atm. As a result of the calculation, even when two OH radicals act on phenanthrene in a chain, the reaction for producing phenanthren-9-ol is predicted to be more advantageous than the reaction for producing phenanthren-1-ol. On the other hand, it was predicted that the OH addition process at room temperature would be advantageous for the priority of the OH addition and H abstraction process.

Toxic effects of phenanthrene on fertilization and normal embryogenesis rates of Mesocentrotus nudus and Hemicentrotus pulcherrimus (둥근성게(Mesocentrotus nudus)와 말똥성게(Hemicentrotus pulcherrimus)의 수정 및 정상 배아발생률을 이용한 Phenanthrene의 독성영향)

  • Choi, Hoon;Lee, Ju-Wook;Park, Yun-Ho;Lee, Seung-Min;Choi, Yoon-Seok;Heo, Seung;Hwang, Un-Ki
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.3
    • /
    • pp.333-342
    • /
    • 2020
  • The aim of this study was to define the toxic effects of phenanthrene (PAHs) on the fertilization and normal embryogenesis rates in the two species of sea urchin (Hemicentrotus pulcherrimus and Mesocentrotus nudus). The sperm and fertilized eggs of both sea urchin species were exposed to serial dilutions of phenanthrene for 10 min and 48 hours, respectively. The fertilization rate and normal embryogenesis rate of H. pulcherrimus and M. nudus were decreased in a concentration-dependent manner. The EC50 for the fertilization rate of H. pulcherrimus and M. nudus was 17.48 mg L-1 and 16.21 mg L-1, and the EC50 for the normal embryogenesis rate was 2.99 mg L-1 and 0.36 mg L-1, respectively. Between the two species, H. pulcherrimus was more sensitive to phenanthrene exposure, and 48 h normal embryogenesis was the more sensitive endpoint. Therefore, the results of this study demonstrated that the exposure of both sea urchin species to phenanthrene caused alterations in egg fertilization and the early developmental stages.

Estimation of Initial Concentrations of Phenanthrene and Atrazine from Soil Properties and Bioavailability During Aging

  • Chung, Namhyun
    • Journal of Applied Biological Chemistry
    • /
    • v.44 no.4
    • /
    • pp.194-198
    • /
    • 2001
  • Contaminated sites are often abandoned for an extended period of time, thus organopollutants becoming sequestered. The information on the initial concentrations of the contaminants would be helpful for the economic bioremediation of the chemicals. The present study estimated the initial concentrations of atrazine and phenanthrene through multiple regression analyses using soil properties and the amount of chemicals available in situ. Percentage mineralized or extracted was best correlated with organic C or logarithm of organic C, and the $R^2$ values were 0.548 and 0.894 for atrazine and phenanthrene, respectively. Estimation of the initial concentration of the chemicals was then calculated from both the percentage mineralized or extracted and the amount of chemicals extracted or mineralized. Results showed that the estimation of the initial concentration of the chemical at the time of contamination is feasible.

  • PDF

Effect of Electrolyte Concentration on Surfactant-Enhanced Electrokinetic Removal of Phenanthrene

  • 이유진;박지연;김상준;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.346-349
    • /
    • 2004
  • Surfactant-enhanced electrokinetic (EK) process was investigated to remove polycyclic aromatic hydrocarbons (PAHs) from low-permeable soils. Phenanthrene and kaolinite were selected as a representative PAH and a model soil, respectively. A nonionic surfactant Tergitol 15-S-12 was applied to improve the solubility of phenanthrene and sodium chloride was used as an electrolyte at the various concentrations from 0.001 to 0.1M. The addition of electrolyte affected both the removal efficiency and operation cost. When electrolyte was introduced, the electrical potential gradient became low and thus power consumption was reduced. However, as electrolyte concentration increased, the electroosmotic flow also decreased, so the removal efficiency of contaminant decreased. Therefore, the removal efficiency and power consumption should be considered simultaneously to determine the iptimum surfactant concentration, so a relatively lower concentration of electrolyte than certain value is desired.

  • PDF

동전기 기술과 계면활성제를 이용한 clay에서의 Phenanthrene 제거

  • 박지연;이현호;조현정;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.121-124
    • /
    • 2000
  • In-situ soil remediation using electrokinetics has been investigated and the attempts for the removal of hydrocarbons have been continued. In this study, the electrokinetic remediation using three different kinds of surfactnats was conducted for the removal of phenanthrene from clay The used surfactnats were APG, Brij30 and SDS. In the solubility test for phenanthrene, the experimental result was APG

  • PDF

Microbial Properties Influencing The Bioavailability of Aged Chemical in Soil. (미생물 종별 특성과 토양에 장기간 노출된 화합물들의 Bioavailability와의 상관 관계)

  • 박성희;조재경;이남영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.137-141
    • /
    • 1998
  • A chemical has been aging in soil environment is more less bioavailable than freshly added chemical. The amount of bioavailability of the aged chemical is different by bacterial strains. The difference could be depend on physiochemical properties of each strain. Phenanthrene was employed as an aged chemical. Seven bacteria were isolated from activated sludge and petroleum disposed soil. These strains were able to degrade phenanthrene and to grow using phenanthrene as a sole carbon source. According to the result of materialization and chemical extraction experiment, the bioavailable amount of aged phenanthrene which has been aged in Lima loam is different by each bacteria. Several physiochemical properties of each strain were tested to certify correlation with their different amount of bioavailability.

  • PDF