Browse > Article
http://dx.doi.org/10.5012/jkcs.2021.65.1.9

A DFT Study for the Reaction Pathway(s) of Polycyclic Aromatic Hydrocarbons I: Phenanthrene Degradation with two OH Radicals  

Lee, Min-Joo (Department of Biology and Chemistry, Changwon National University)
Lee, Byung-Dae (Department of Health, Uiduk University)
Publication Information
Abstract
In this study, the DFT calculation was performed using the B3LYP/6-31G(d,p) basis sets for the reaction process in which phenanthrene decomposes due to the chain reaction of two OH radicals on phenanthrene in the gaseous state of 298 K at 1 atm. As a result of the calculation, even when two OH radicals act on phenanthrene in a chain, the reaction for producing phenanthren-9-ol is predicted to be more advantageous than the reaction for producing phenanthren-1-ol. On the other hand, it was predicted that the OH addition process at room temperature would be advantageous for the priority of the OH addition and H abstraction process.
Keywords
Polycyclic aromatic hydrocarbon; Phenanthrene; Reaction pathway(s); Activation energy; DFT study;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Park, S. S.; Kim, Y. J.; Kang, C. H.; Cho, S. Y.; Kim, T. Y.; Kim, S. J. J. KOSAE 2006, 22, 57.
2 Lee, M.-D.; Kim, S.-Y.; Lim, Y.-J.; Seo, S.-J.; Kim, Y.-H.; Cho, K.-C. J. Kor. Environ. Adm. 2010, 16, 17.
3 Wang, L.; Atkinson, R.; Arey, J. Atm. Environ. 2007, 41, 2025. DOI: 10.1016/j.atmosenv.2006.11.008   DOI
4 Zhang, Y.; Yang, B.; Meng, J.; Gao, S.; Dong, X.; Shu, J. Atm. Environ. 2010, 44, 697. DOI: 10.1016/j.atmosenv.2009.11.017   DOI
5 Cheng, M.; Zeng, G.; Huang, D.; Lai, C.; Xu, P.; Zhang, C.; Liu, Y. Chem. Eng. J. 2016, 284, 582. DOI: 10.1016/j.cej.2015.09.001   DOI
6 Atkinson, R. Chem. Rev. 1986, 86, 69. DOI: 10.1021/cr00063a002   DOI
7 Berckholtz, C.; Berckholtz, T. A.; Hadad, C. M. J. Phys. Chem. A 2001, 105, 140. DOI: 10.1021/jp001884b   DOI
8 Lorenz, K.; Zellner, R. Ber. Bunsen-Ges. Phys. Chem. 1983, 87, 629.   DOI
9 Atkinson, R.; Arey, J.; Zielinska, B.; Aschmann, S. M. Environ. Sci. Technol. 1987, 21, 1014.   DOI
10 Tokmakov, I. V.; Lin, M. C. J. Phys. Chem. A 2002, 106, 11309. DOI: 10.1021/jp021184   DOI
11 Goulay, F.; Rebrion-Rowe, C.; Le Garrec, J. L.; Le Picard, S. D.; Canosa, A.; Rowe, B. R. J. Chem. Phys. 2005, 122, 104308. DOI: 10.1063/1.1857474   DOI
12 Ananthula, R.; Yamada, T.; Taylor, P. H. J. Phys. Chem. A 2006, 110, 3559. DOI: 10.1021/jp054301c   DOI
13 Helming, D.; Harger, W. P. Sci. Total Environ. 1994, 148, 11.   DOI
14 Zhao, N.; Zhang, Q.; Wang, W. Sci. Total Environ. 2016, 563-564, 1008. DOI: 10.1016/j.scitotenv.2016.01.089   DOI
15 Frisch, M. J.; et al. Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford, CT, USA, 2019.
16 Dennington, R. D. II; Keith, T. A.; Millam, J. M. Gauss-View 6.0.16, Semichem Inc., Shawnee Mission, Kansas, USA, 2016.
17 Lee, B.-D.; Ha, K.; Lee, M.-J. J. Korean Chem. Soc. 2018, 62, 344. DOI: 10.5012/jkcs.2018.62.5.344.   DOI