Influence of Acetate on the Removal of Phenanthrene from Contaminated Soil using Fenton Reaction

Fenton Reaction을 이용한 Phenanthrene 오염 토양 처리에서 Acetate의 영향

  • Published : 2009.05.30

Abstract

Due to rapid consumption of hydrogen peroxide, large amount of hydrogen peroxide is required when Fenton reaction is applied to the contaminated soil. In this study, acetate was employed as a ligand of $Fe^{2+}$ to enhance the efficiency of removal of phenanthrene by securing the stability of hydrogen peroxide. 0.5 ${\sim}$ 3 times of acetate (2${\sim}$12mM) was added to compare with molar concentration of $Fe^{2+}$. Low initial concentration of hydrogen peroxide was 0.7% to eliminate side effect of removal efficiency. The results showed that hydrogen peroxide lifetime was lasted up to 72 hours, or more than 50 times of normal lifetime. Phenanthrene removal efficiency was improved up to 70% due to stabilized hydrogen peroxide. Ferrous ion was oxidized to ferric ion and oxidation-reduction was repeated during the reaction. Finally ferric ion was reduced to ferrous by $HO_2$. It was confirmed that, due to the influence of hydrogen peroxide, pH was acid region and it remained at the range of 4 ${\sim}$ 5 when 8 mM or more of acetate was added. Acetate which was used as the ligand of Fe was also decomposed by Fenton reaction. The decomposition time of acetate was slower than phenanthrene. Therefore, it was able to come to the conclusion that phenanthrene was superior to acetate at the competition for decomposition. Through the results of this study, it was able to identify the possibilities to improve the efficiency of Fenton reaction in the contaminated soil and its economic feasibility, and to move to more realistic technique through research expanded to neutral pH region.

오염토양에 펜톤 반응을 적용함에 있어서 과산화수소의 빠른 소모로 과량의 과산화수소가 요구되어지는 것이 단점으로 지적되고 있다. 이에 본 연구에서는 대표적인 PAHs물질인 phenanthrene으로 오염된 토양 처리를 위해 철의 리간드로 acetate를 사용하여 과산화수소의 안정성 확보를 통하여 공정의 효율을 높이고자 하였다. Acetate는 철의 몰농도에 대비하여 0.5배에서 3배(2${\sim}$12 mM)까지 주입하였고, 과산화수소는 분해 효율에 미치는 영향을 배제하기 위해 낮은 농도인 0.7%를 주입하였다. Acetate가 주입되어 과산화수소의 잔류시간은 최대 50배 이상 증가하였으며, 과산화수소의 안정성이 확보됨에 따라 phenanthrene의 제거율도 70%까지 향상되었다. 반응 중에 철은 2가와 3가로 산화환원을 반복하였고 과산화수소가 모두 분해되는 시점부터 $HO_2^-$에 의해 2가철로 환원이 이루어졌다. 과산화수소의 영향으로 반응중의 pH는 산성영역을 나타냈으며, acetate가 8 mM 이상 주입되었을때 4${\sim}$5범위 내에 머무르는 것을 확인하였다. Fenton reaction에 의해 철의 리간드로 사용된 acetate 역시 분해가 이루어지는 것을 확인할 수 있었으며, phenanthrene의 비해 분해되는 시점이 느린 것으로 나타나 분해되어지는 경쟁관계에서 phenanthrene이 우세한 것으로 판단된다. 이상의 연구결과를 통해 오염 토양처리에 기존 Fenton reaction의 효율성과 경제성을 향상시킬 수 있는 가능성을 확인할 수 있었으며, 중성영역의 pH로 확장된 연구 등을 통해 좀 더 현실적인 공법으로 발전할 수 있으리라 판단된다.

Keywords

References

  1. Jacob, J., "The significance of polycyclic aromatic hydrocarbons as environmental carcinogens," Pure & Appl. Chem., 68, 301-308(1996) https://doi.org/10.1351/pac199668020301
  2. Keiichi, A., Takashi, S., Mashiro, Y., and Yasushi, K., "Polynuclear aromatic hydrocarbons concentration and mutagenic activity in soil sampled at roadsides," J. Japan Soc. Air Pollut., 27(4),190-197(1962)
  3. Samanta, S. K., Singh, O. V., and Jain, R. K., "Polycyclic aromatic hydrocarbons: environmental pollution and bioremedeation," Trends Biotechnol., 20(5), 243-248 (2002) https://doi.org/10.1016/S0167-7799(02)01943-1
  4. U.S. Environmental Protection Agency Home Page, http:// www.epa.gov, July(2006)
  5. J. in, D., Jiang, X., Jing, X., and Ou Z., "Effects of concentration, head group, and structure of surfactants on the degradation of phenanthrene," J. Hazard Mater., 144, 215-221(2007) https://doi.org/10.1016/j.jhazmat.2006.10.012
  6. 이민효, 최상일, 이재영, 이강근, 박재우, ‘토양지하수환경’, 동화기술, pp. 294-372(2006)
  7. Fenton, H. J. H., "Oxidation of tartatic acid in presence of iron," J. Chem. Soc., 65, 899-910(1894)
  8. Haber, F. and Weiss, J., "The catalytic decomposition of hydrogen peroxide by iron salts," Proc. Roy. Sot., London. Series A., 147, 332-351(1934) https://doi.org/10.1098/rspa.1934.0221
  9. 허정욱, 서승원, 김민경, 공성호, "Modified Fenton Reaction과 Fenton-like Reaction을 이용한 화약류 오염토양/지하수의 처리에 관한 연구", Korean Chem. Eng. Res., 43(1), 153-160(2005)
  10. Watts, R., Dilly, S., "Evaluation of iron catalysts for the Fenton-like remediation of diessel contaminated soils," J. Hazard Mater., 51, 209-224 (1996) https://doi.org/10.1016/S0304-3894(96)01827-4
  11. Lin, S. H. and Lo, C. C., "Fenton Process for Treatment of Desizing Wastewater," Water Res., 31(8), 2050-2056( 1997) https://doi.org/10.1016/S0043-1354(97)00024-9
  12. Watts, R. J., "Hydrogen Peroxide for Physicochemically degrading Petroleum contaminated Soils," Remediation, 2, 413-425(1992) https://doi.org/10.1002/rem.3440020407
  13. Tyre, B. W., Watts, R. J., Miller, G. C., "Treatment of four biorefractory contaminants in soils using catalyzed hydrogen peroxide," J. Environ. Qual., 20(4), 832-838 (1991) https://doi.org/10.2134/jeq1991.00472425002000040021x
  14. Eisenberg, G. K., "Colorimetric determination of hydrogen peroxide," Industrial and Engineering Chemistry, 15(5), 327-328(1943)
  15. Walling, C., "Fenton's reagent revisited," Ace, Chem. Res., 8(4), 125-131(1975) https://doi.org/10.1021/ar50088a003
  16. Walling, C. and Goosen, A., "Mechanism of the ferric ion catalyzed decomposition of hydrogen peroxide. Effect of organic substrates," J. Am. Chem. Soc., 95(9), 2987-2991(1973) https://doi.org/10.1021/ja00790a042
  17. 임학규, 남궁규철, 윤제용, '펜톤 화학 반응의 이론적 이해' , 16(1), 9-14(2004)