DOI QR코드

DOI QR Code

A Study about Development of Hydrogen Peroxide Stabilizer in Modified Fenton Reaction Using Anion Surfactant

음이온 계면활성제를 사용한 modified Fenton 반응의 과수안정제 개발에 관한 연구

  • 김한기 (한양대학교 대학원 건설환경공학과) ;
  • 박강수 (한양대학교 대학원 토목공학과) ;
  • 김정환 (한양대학교 대학원) ;
  • 박주양 (한양대학교 건설환경공학과)
  • Received : 2011.01.13
  • Accepted : 2011.06.23
  • Published : 2011.08.31

Abstract

In this study, hydrogen peroxide is stabilized in modified Fenton reaction to improve the soil remediation. Phenanthrene, which is the typical compound in PAHs, was spiked into soil samples to copy the original contaminated site. Anionic surfactant, SDS (Sodium dodecyl sulfate) was used for hydrogen peroxide stabilizer. 4 mM of Fe(II), 5~50 mM of SDS and 102.897 mM of $H_2O_2$ was injected into soil samples which is contaminated by 125 mg/kg of phenanthrene to analyze decomposition rate of phenanthrene in modified Fenton reaction. In condition which SDS was injected 30 mM, decomposition rate of phenanthrene has best efficiency as 95% and in condition which SDS was injected over 30 mM, decomposition rate is lower than SDS 30 mM because SDS enacted as scavenger in the system. Results which assess the change of hydrogen peroxide concentration after injecting hydrogen peroxide stabilizer showed that hydrogen peroxide concentration was 14.6995 mM so that is stabilized at Fe(II) 2 mM condition in 48 hours. On the other hand, hydrogen peroxide is not stable in Fe(III) condition. SDS concentration was fixed and iron concentration was changed 2~8 mM to find out optimize proportion between iron concentration and SDS concentration in modified Fenton reaction. Consequentially, in condition of which Fe(II) 4 mM and SDS 30 mM, reaction has the highest removal rate as 95%.

본 연구에서는 modified fenton 반응에서 과산화수소를 안정화하여 오염토양 정화의 효과를 증대시키고자 하였다. 오염토양을 모사하기 위하여 PAHs 계열의 대표적인 오염물질인 phenanthrene을 사용하였다. 과수안정제로는 음이온 계면활성제인 SDS(Sodium dodecyl Sulfate)를 사용하였다. Modified Fenton 반응에서 phenanthrene의 제거율을 확인하기 위하여 Fe(II) 4 mM, SDS 5~50 mM 및 $H_2O_2$ 102.897 mM를 phenanthrene 125 mg/kg으로 오염된 토양에 주입하였다. 과수안정제인 SDS가 30 mM이 사용된 경우 phenanthrene의 제거 효율이 95%로 가장 높게 나타났으며 30 mM이싱에서는 시스템에서 SDS가 scavenger로 작용하여 오염물질의 제거효율이 SDS 30 mM 일 때 보다 낮게 나타났다. 과수안정제를 사용한 뒤 과산화수소의 농도변화를 분석한 결과 Fe(II) 2 mM에서 48시간 이후 14.6995 mM 이상 남아있어서 가장 안정적이었지만, Fe(III)을 주입한 경우에는 과산화수소가 안정화되지 않았다. Modified Fenton 반응에서 철과 SDS 농도 사이의 최적의 비율을 찾기 위하여 SDS의 농도는 30 mM로 고정하고 철의 농도를 2~8 mM로 변화시켜 실험한 결과 Fe(II) 4 mM 및 SDS 30 mM에서 약 95%의 가장 높은 제거율을 보였다.

Keywords

References

  1. 김정환, 최영무, 김정환, 박주양(2007) Phenanthrene의 goethite 촉매에 의한 Fenton 산화에 있어서 음이온/비이온 및 혼합 계면활성제의 영향. 대한환경공학회.한국대기환경학회.한국폐기물학회 공동학술대회 논문집, 한국폐기물학회, P025, pp. 2545-2548.
  2. 김정환, 최원호, 김정환, 박주양(2009) Phenanthrene의 goethite 촉매에 의한 Fenton 산화에 있어서 음이온/비이온 계면활성제의 영향. 대한토목학회논문집, 대한토목학회, 제29권 제2B호, pp. 207-212.
  3. 박준석(2006) 펜톤산화 공정을 이용한 난분해성 오염토양의 처리. 지반환경공학회지, 한국지반환경공학회, 제7권 제2호, pp. 28- 33.
  4. Ananthula, Rajeshwar., Takahiro Yamada, Philip H. Taylor (2007) Kinetics of oh radical reaction with phenanthrene : New Absoulute Rate Measurements and Comparison with Othe PAHs, International Journal of Chemical Kinetics, Vol. 39, pp. 629-637. https://doi.org/10.1002/kin.20278
  5. Ang, Carolina C. and Abdul S. Abdul (1991) Aqueous Surfactant washing of residual oil contamination from sandy soil. Ground Water Monitoring and Remediation, Vol. 11, Issue 2, pp. 121- 127. https://doi.org/10.1111/j.1745-6592.1991.tb00373.x
  6. Bielski, B.H.J. and Allen, A.O. (1977) Mechanism of the disproportionation of superoxide radicals. J. Phys. Chem. Vol. 81, No. 11, pp. 1048-1050. https://doi.org/10.1021/j100526a005
  7. Barbeni, M., Minero, C., and Pelizzetti, E. (1987) Chemical degradation of chlorophenols with Fenton's reagent $(Fe^{2+} + H_{2}O_{2})$. Chemosphere, Vol. 16, pp. 22-25.
  8. Beak, S.O., Field, R.A., Goldstone, M.E., Kirk, P.W., Lester, J.N., and Perry, R. (1991) A review of atmospheric polycyclic aromatic hydrocarbons; Source, fate and behavior. Water, Air & Soil Pollution, Vol. 60, No. 3-4, pp. 279-300. https://doi.org/10.1007/BF00282628
  9. Berardescok, G., Dyhman, S., Gallagher, E., and Shiaris, M.P. (1998) Spatial and temporal variation of phenanthrene degrading bacteria in intertidal sediments. Appl. Environ. Microbial, Vol. 64, No. 7, pp. 2560-2565.
  10. Blumer, M., Blumer, W., and Reich, T. (1997) Polycyclic aromatic hydorcarbons in soil of a mountain valley: correlation with highway traffic and cancer incidence. Environ. Sci. Technol., Vol. 11, No. 12, pp. 1082-1084.
  11. C. von Sonntag (2006) Free-radical-induced DNA damage and its repair: A Chemical Perspective. Springer, Berlin, pp. 357-481.
  12. Goi., A., Veressinina, Y., and Trapido, M. (2008) Degradation of salicylic acid by Fenton and modified Fenton treatment. Chemical Engineering Journal, Vol. 143, Issues 1-3, pp. 1-9. https://doi.org/10.1016/j.cej.2008.01.018
  13. Eisenberg, G.M. (1943) Colorimetric determination of hydrogen peroxide, Industrial and Engineering Chemistry, Vol. 15, No. 5, pp. 327-328.
  14. Johnsen, Anders, R., Lukas, Y. Wick and Hauke Harms (2005) Principles of microbial PAH-degradation in soil. Envrionmental Pollution, Vol. 133, pp. 71-84. https://doi.org/10.1016/j.envpol.2004.04.015
  15. Kiwi, J., Lopez, A., and Nadtochenko, V. (2000) Mechanism and Kinetics of the OH- radical intervention during Fenton Oxidationin the Presence of a Significant Amount of Radical Scavenger (Cl-). Envrion. Sci. Technol., Vol. 34, No. 11, pp. 2162- 2168. https://doi.org/10.1021/es991406i
  16. Laflamme, R.E. and Hites, R.A. (1978) The global distribution of polycyclic aromatic hydrocarbons in recent sediments, Geochimica et Cosmochimica Acta., Vol. 42, Issue 3, pp. 289-303. https://doi.org/10.1016/0016-7037(78)90182-5
  17. Lauren, L., Bissey, Jeffrey, L., Smith and Richard, J. Watts (2006) Soil organic matter-hydrogen peroxide dynamics in the treatment of contraminated soils and groundwater using catalyzed $H_{2}O_{2}$ propagation (modified Fenton's reagent). Water Research. Vol. 40, Issue 13, pp. 2477-2484. https://doi.org/10.1016/j.watres.2006.05.009
  18. Lin, Sheng H., Chi, M. Lin, and Horng, G. Leu (1999) Operating characteristics and kinetic studies of surfactant wastewater treatment by Fenton oxidation. Wat. Res., Vol. 33, No. 7, pp. 1735-1741. https://doi.org/10.1016/S0043-1354(98)00403-5
  19. Lin, J.-M., Nakagawa, M., Uchiyama, M., and Hobo, T. (1999) Determination of Critical Micelle Concentration of SDS in Formamide by Capillary Electrophoresis. Chromatographia, Vol. 50, No. 11/12, pp. 739-744. https://doi.org/10.1007/BF02497314
  20. Martens, Dean A. and William T. Frankenberger, Jr (1995) Enhanced degradation of polycyclic aromatic hydrocarbons in soil treatment with an advanced oxidative process - Fenton's reagent, Journal of Soil Contamination, Vol. 4, No. 2, pp. 175-190. https://doi.org/10.1080/15320389509383491
  21. Morillo, E., Romero, A.S., Maqueda, C., Madrid, L., Ajmone-Marsan, F., Grcman, H., Davidson, C.M., Hursthouse, A.S., and Villaverde, J. (2007) Soil Pollution by PAHs in urban soils : a comparison of three European cities. J. Environ. Monit., Vol. 9, pp. 1001-1008. https://doi.org/10.1039/b705955h
  22. Murphy, A.P., Boegli, W.J., Price, M.K., and Moody, C.D. (1989) A Fenton-like reaction to neutralize formaldehyde waste solutions. Environ. Sci. Technol., Vol. 23, No. 2, pp. 166-169. https://doi.org/10.1021/es00179a004
  23. Rickabaugh, J., Clement, S., Martin, J., Sunderhaus, M., Lewis, R.F. (1986) Chemical and microbial stabilization techniques for remedial action sites. proceedings of the Twelfth annual reaserch symposium, EPA/600/9-85/022, pp. 193.
  24. Sedlack, D.L. and Andren, A.W. (1991) Aqueous-Phase oxidation of polychlorinated biphenyls by hydroxil radicals. Environ. Sci. Technol., Vol. 25, pp. 1419-1427. https://doi.org/10.1021/es00020a009
  25. Stull, Daniel R. (1947) Vapor pressure of pure substnaces organic compounds. Industrial and Engineering chemistry, Vol. 39, No. 4, pp. 517-540. https://doi.org/10.1021/ie50448a022
  26. Tyre, B.W., Watts, R.J., and Miller, G.C., (1991) Treatment of four biorefractory contaminates in soils using catalyzed hydrogen peroxide, J. Environ. Qual., 20, pp. 832-838.
  27. Watts, R.J., Udell, M.D., Rauch, P.A., and Leung, S.W. (1990) Treatment of pentachlorophenol-contaminated soils using Fenton's reagent. Hazardous Waste and Hazardous Materials, Vol. 7, No. 4, pp. 335-345. https://doi.org/10.1089/hwm.1990.7.335
  28. Watts, R.J., Dennis, D. Finn, Lynn, M. Cutler, Jeremy, T. Schmidt, and Amy, L. Teel. (2007) Enhanced stability of hydrogen peroxide in the presence of subsurface solids. Journal of Contaminant Hydrology, Vol. 91, Issues 3-4, pp. 312-326. https://doi.org/10.1016/j.jconhyd.2006.11.004
  29. Wilcke, Wolfgang (2000) Polycyclic Aromatic Hydrocarbons (PAHs) in Soils - A Review. J. Plant Nutr. Soil Sci., Vol. 163, pp. 229- 248. https://doi.org/10.1002/1522-2624(200006)163:3<229::AID-JPLN229>3.0.CO;2-6
  30. Chu, W. (2003) Remediation of contaminated soils by surfactantaided soil washing. Pract. Periodical of Haz., Toxic, and Radioactive Waste Mgmt., Vol. 7, Issue 1. pp. 19-24.
  31. Yeom, Ick tae, Mriganka M. Ghosh and Chris D. Cox (1996) Kinetics Aspects of Surfactant Solubilization of Soil-Bound Polycyclic Aromatic Hydrocarbons. Environ. Sci. Technol., Vol. 30, No. 5, pp. 1589-1595. https://doi.org/10.1021/es950567t
  32. Yunfu Sun and Joseph J. Pignatello. (1993) Activation of Hydrongen Peroxide by Iron(III) chelates for Abiotic Degradation of Herbicides and Insecticides in Water. J. Agric. Food Chem., 41, pp. 308-312. https://doi.org/10.1021/jf00026a034
  33. Zhao, Baowei, Lizhong Zhu, Wei Li and Baoliang Chen (2005) Solubilization and biodegradation of phenanthrene in mixed anionic-nonionic surfactant solution. Chemosphere, Vol. 58, pp. 33-40. https://doi.org/10.1016/j.chemosphere.2004.08.067