Browse > Article
http://dx.doi.org/10.11626/KJEB.2020.38.3.333

Toxic effects of phenanthrene on fertilization and normal embryogenesis rates of Mesocentrotus nudus and Hemicentrotus pulcherrimus  

Choi, Hoon (Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS))
Lee, Ju-Wook (Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS))
Park, Yun-Ho (Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS))
Lee, Seung-Min (Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS))
Choi, Yoon-Seok (Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS))
Heo, Seung (Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS))
Hwang, Un-Ki (Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS))
Publication Information
Korean Journal of Environmental Biology / v.38, no.3, 2020 , pp. 333-342 More about this Journal
Abstract
The aim of this study was to define the toxic effects of phenanthrene (PAHs) on the fertilization and normal embryogenesis rates in the two species of sea urchin (Hemicentrotus pulcherrimus and Mesocentrotus nudus). The sperm and fertilized eggs of both sea urchin species were exposed to serial dilutions of phenanthrene for 10 min and 48 hours, respectively. The fertilization rate and normal embryogenesis rate of H. pulcherrimus and M. nudus were decreased in a concentration-dependent manner. The EC50 for the fertilization rate of H. pulcherrimus and M. nudus was 17.48 mg L-1 and 16.21 mg L-1, and the EC50 for the normal embryogenesis rate was 2.99 mg L-1 and 0.36 mg L-1, respectively. Between the two species, H. pulcherrimus was more sensitive to phenanthrene exposure, and 48 h normal embryogenesis was the more sensitive endpoint. Therefore, the results of this study demonstrated that the exposure of both sea urchin species to phenanthrene caused alterations in egg fertilization and the early developmental stages.
Keywords
phenanthrene; Hemicentrotus pulcherrimus; Mesocentrotus nudus; toxicity test;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Botello AV, SF Villanueva, GG Diaz and E Escobar-Briones. 1998. Polycyclic aromatic hydrocarbons in sediments from Salina Cruz Harbor and coastal areas, Oaxaca, Mexico. Mar. Pollut. Bull. 36:554-558.   DOI
2 Budzinski H, L Jones, J Bellocq, C Pierard and P Garrigues. 1997. Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Mar. Chem. 58:85-97.   DOI
3 Cachot J, O Geffard, S Augagneur, S Lacroix, K Le-Menach, L Peluhet, J Couteau, X Denier, MG Devier, D Pottier and H Budzinsk. 2006. Evidence of genotoxicity related to high PAH content of sediments in the upper part of the Seine estuary (Normandy, France). Aquat. Toxcol. 79:257-267.   DOI
4 Castro-Jimenez J, N Berrojalbiz, J Wollgast and J Dachs. 2012. Polycyclic aromatic hydrocarbons (PAHs) in the Mediterranean Sea: Atmospheric occurrence, deposition and decoupling with settling fluxes in the water column. Environ. Pollut. 166:40-47.   DOI
5 Chen CW and CF Chen. 2011. Distribution, origin, and potential toxicological significance of polycyclic aromatic hydrocarbons (PAHs) in sediments of Kaohsiung Harbor, Taiwan. Mar. Pollut. Bull. 63:417-423.   DOI
6 Chung HH, HS Jeong, EY Kim, HI Cho, JC Hwang and SW Choi. 2004. Polycyclic aromatic hydrocarbons in the sediments of Kwangyang Bay on Korea. J. Environ. Sci. Int. 13:543-549.   DOI
7 Di Toro D, J McGrath and D Hansen. 2000. Technical basis for narcotic chemicals and polycyclic aromatic hydrocarbon criteria. I. Water and tissue. Environ. Toxicol. Chem. 19:1951-1970.   DOI
8 Greenwood PJ. The influence of an oil dispersant chemserve OSE-DH on the viability of sea urchin gametes. Combined effects of temperature, concentration and exposure time on fertilization. Aquat. Toxicol. 4:15-29.   DOI
9 You YS, JH Lee, JC Park, DM Kim and HS Cho. 2012. Distribution characteristics of polycyclic aromatic hydrocarbons (PAHs) in riverine waters of Ulsan Coast, Korea. J. Korean Soc. Mar. Environ. Saf. 18:398-405.   DOI
10 Yu CM. 1998. A study on the effect of heavy metals on embryos formation of sea urchins. Kor. J. Env. Hlth. Soc. 24:6-10.
11 Hwang UK, CW Rhee, KS Kim, KH An and SY Park. 2009. Effects of salinity and standard toxic metal (Cu, Cd) on fertilization and embryo development rates in the Sea Urchin (Hemicentrotus pulcherrimus). J. Environ. Toxicol. 24:9-16.
12 Haritash AK and CP Kaushik. 2009. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. J. Hazard. Mater. 169:1-15.   DOI
13 Honda M and N Suzuki. 2020. Toxicities of polycyclic aromatic hydrocarbons for aquatic animals. Int. J. Environ. Res. Public Health 17:1-23.
14 Hwang UK, CW Lee, SM Lee, KH An and SY Park. 2008. Effects of salinity and standard toxic metals (Cu, Cd) on fertilization and embryo development rates in the Sea Urchin (Strongylocentrotus nudus). J. Environ. Sci. 17:775-781.   DOI
15 Hwang UK, HM Ryu, YH Choi, SM Lee and HS Kang. 2011. Effect of cobalt (II) on the fertilization and embryo development of the Sea Urchin (Hemicentrotus pulcherrimus). Korean J. Environ. Biol. 29:251-257.
16 Hwang UK, DH Kim, HM Ryu, JW Lee, SY Park and HS Kang. 2014. Effect of bisphenol A on early embryonic development and the expression of Glutathione S-transferase (GST) in the Sea Urchin (Hemicentrotus pulcherrimus). Korean J. Environ. Biol. 32:234-242.   DOI
17 Kobayashi N. 1991. Marine pollution bioassay by using sea urchin eggs in the Tanabe Bay, Wakayama Prefecture, Japan, 1970-1987. Mar. Pollut. Bull. 23:709-713.   DOI
18 Johnsen AR, LY Wick and H Harms. 2005. Principles of microbial PAH-degradation in soil. Environ. Pollut. 133:71-84.   DOI
19 Kanaly RA and S Harayama. 2000. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J. Bacteriol. 182:2059-2067.   DOI
20 Kanaki M, A Nikolaou, CA Makri and DF Lekkas. 2007. The occurrence of priority PAHs, nonylphenol and octylphenol in inland and coastal waters of Central Greece and the Island of Lesvos. Desalination 210:16-23.   DOI
21 Latimer JS and J Zheng. 2003. The sources, transport and fate of PAHs in the marine environment. pp. 9-33. In: PAHs: An Ecotoxicological Perspective (Douben PET eds.). John Wiley and Sons Incorporated, New York.
22 Lim L, O Wurl, S Karuppiah and JP Obbard. 2007. Atmospheric wet deposition of PAHs to the sea-surface microlayer. Mar. Pollut. Bull. 54:1212-1219.   DOI
23 Lee TY. 2018. Concentration, sources, and ecological risk assessment of polycyclic aromatic hydrocarbons in sediments obtained from near Gwangan Bridge. J. Korean Soc. Environ. Eng. 40:379-384.   DOI
24 Manzo S, S Buono and C Cremisini. 2006. Toxic effects of Irgarol and Diuron on seaurchin Paracentrotus lividus Early Development, fertilization, and offspring quality. Arch. Environ. Contam. Toxicol. 51:61-68.   DOI
25 Jackim E and D Nacci. 1986. Improved sea urchin DNA-based embryo growth toxicity test. Environ. Toxicol. Chem. 5:561-565.   DOI
26 Moon HB, SK Kang, HS Kim, MK Choi, J Yu, HG Choi and JS Park. 2007. Polycyclic Aromatic Hydrocarbons (PAHs) in seawater and marine sediments from Mokpo coast in Korea. J. Kor. Soc. Environ. Anal. 10:83-90.
27 Park PS, NS Kim, UH Yim, WJ Shim and GB Kim. 2009. Spatial and vertical distribution of polycyclic aromatic hydrocarbons in sediment of the shipyard area in Gohyeon Bay. J. Korean Soc. Mar. Environ. Energy 12:68-74.
28 Pagano G, G Corsale, A Esposito, PA Dinnel and LA Romana. 1989. Use of sea urchin sperm and embryo bioassay in testing the sublethal toxicity of realistic pollutant level. Adv. Appl. Biotech. Ser. 5:153-163.
29 Baek SO, RA Field, ME Goldstone, PW Kirk, JN Lester and R Perry. 1991. A review of atmospheric polycyclic aromatic hydrocarbons: Sources, fate, and behavior. Water Air Soil Pollut. 60:279-300.   DOI
30 Bartlett JHG, DM Mageean and RJ O'Conner. 2000. Residential expansion as a continental threat to U.S. coastal ecosystem. Popul. Environ. 21:429-468.   DOI
31 Qiu YW, G Zhang, GQ Liu, LL Guo, XD Li and O Wai. 2009. Polycyclic aromatic hydrocarbons (PAHs) in the water column and sediment core of Deep Bay, South China. Estuar. Coast. Shelf Sci. 83:60-66.   DOI
32 Serafim A, R Company, B Lopes, C Pereira, A Cravo, VF Fonseca, S Franca, MJ Bevianno and HN Cabral. 2013. Evaluation of sediment toxicity in different Portuguese estuaries: Ecological impact of metals and polycyclic aromatic hydrocarbons. Estuar. Coast. Shelf Sci.130:30-41.   DOI
33 Sung CG, PS Park, JH Lee and CH Lee. 2014. Effect of five PAHs (2-methylnaphthalene, fluorene, dibenzothiophene, phenanthrene, and pyrene) on the embryonic development in the mussel, Mytilus galloprovincialis. Korean J. Malacol. 30:177-187.   DOI
34 UNEP. 2003. Proceedings of workshop to develop a global POPs monitoring programme to support the effectiveness evaluation of the Stockholm Convention. United Nations Environment Program. Nairobi, Kenya.
35 Veith GD, DJ Call and L Brooke. 1983. Structure-toxicity relationships for the fathead minnow, Pimephales promelas: narcotic industrial chemicals. Can. J. Fish. Aquat. Sci. 40:743-748.   DOI
36 Wu Y, J Zhang and ZJ Zhu. 2003. Polycyclic aromatic hydrocarbons in the sediments of the Yalujiang Estuary, North China. Mar. Pollut. Bull. 46:619-625.   DOI
37 Nikolaou K, P Masclet and G Mouvier. 1984. Sources and chemical-reactivity of polynuclear aromatic hydrocarbons in the atmosphere-A critical-review. Sci. Total Environ. 32:103-132.   DOI