• 제목/요약/키워드: perturbation solution

검색결과 245건 처리시간 0.032초

Investigation of nonlinear vibration behavior of the stepped nanobeam

  • Mustafa Oguz Nalbant;Suleyman Murat Bagdatli;Ayla Tekin
    • Advances in nano research
    • /
    • 제15권3호
    • /
    • pp.215-224
    • /
    • 2023
  • Nonlinearity plays an important role in control systems and the application of design. For this reason, in addition to linear vibrations, nonlinear vibrations of the stepped nanobeam are also discussed in this manuscript. This study investigated the vibrations of stepped nanobeams according to Eringen's nonlocal elasticity theory. Eringen's nonlocal elasticity theory was used to capture the nanoscale effect. The nanoscale stepped Euler Bernoulli beam is considered. The equations of motion representing the motion of the beam are found by Hamilton's principle. The equations were subjected to nondimensionalization to make them independent of the dimensions and physical structure of the material. The equations of motion were found using the multi-time scale method, which is one of the approximate solution methods, perturbation methods. The first section of the series obtained from the perturbation solution represents a linear problem. The linear problem's natural frequencies are found for the simple-simple boundary condition. The second-order part of the perturbation solution is the nonlinear terms and is used as corrections to the linear problem. The system's amplitude and phase modulation equations are found in the results part of the problem. Nonlinear frequency-amplitude, and external frequency-amplitude relationships are discussed. The location of the step, the radius ratios of the steps, and the changes of the small-scale parameter of the theory were investigated and their effects on nonlinear vibrations under simple-simple boundary conditions were observed by making comparisons. The results are presented via tables and graphs. The current beam model can assist in designing and fabricating integrated such as nano-sensors and nano-actuators.

A Numerical Method for the Minimum Norm Solution to the First Kind Integral Equations

  • Yun, Jae Heon
    • 충청수학회지
    • /
    • 제6권1호
    • /
    • pp.25-43
    • /
    • 1993
  • This paper introduces a numerical method approximating the minimum norm solution to the first kind integral equation Kf = g with its kernel satisfying a certain property, where g belongs to the range space of K. Most of the existing expansion methods suffer from choosing a set of basis functions, whereas this method automatically provides an optimal set of basis functions approximating the minimum norm solution of Kf = g. Perturbation results and numerical experiments are also provided to analyze this method.

  • PDF

섭동 이론을 이용한 정상류 Navier-Stokes 방정식의 주기함수 간극에 대한 삼승 법칙의 수정 (Modification of the Cubic law for a Sinusoidal Aperture using Perturbation Approximation of the Steady-state Navier-Stokes Equations)

  • 이승도
    • 터널과지하공간
    • /
    • 제13권5호
    • /
    • pp.389-396
    • /
    • 2003
  • 본 연구는 정상류 Navier-Stokes 방정식에 섭동(perturbation) 이론을 적용하여 주기함수 간극에 대한 삼승법칙의 수정에 대해 논하였다. 이를 위해, 주기함수를 진폭과 파장에 대한 무차원 함수로 전환한 뒤 미소 계수에 대한 무차원 유동함수와 연속 방정식을 적용하였다. 이러한 과정을 통해 정상류 Navier-Stokes 방정식의 섭동 근사해를 구하였으며 이를 유한 차분법에 적용하였다. 단일 절리 모델에 대한유한 차분 수치해석을 통해, 수정된 삼승 법칙이 주기함수 간극의 유체 유동에 대한 정상류 Navier-Stokes 방정식의 섭동 근사해와 잘 일치하는 것으로 나타났다. 이를 통해 본 연구에서 제시된 삼승 법칙이 간극 분포에 따른 유체 유동의 평가에 있어 유용하게 적용될 수 있는 것으로 나타났다.

A CONDITION OF UNIQUENESS AND STABILITY IN A BURSTING MODEL

  • Lee, Eui-Woo
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제9권1호
    • /
    • pp.19-30
    • /
    • 2002
  • We consider one class of bursting oscillation models, that is square-wave burster. One of the interesting features of these models is that periodic bursting solution need not to be unique or stable for arbitrarily small values of a singular perturbation parameter $\epsilon$. Recent results show that the bursting solution is uniquely determined and stable for most of the ranges of the small parameter $\epsilon$. In this paper, we present a condition of uniqueness and stability of periodic bursting solutions for all sufficiently small values of $\epsilon$ > 0.

  • PDF

Propagation Speed of Torsional Waves in a Circular Rod with Harmonically Varying Material Properties

  • Kim, Jin-Oh
    • The Journal of the Acoustical Society of Korea
    • /
    • 제19권1E호
    • /
    • pp.43-47
    • /
    • 2000
  • The paper describes a theoretical study on the speed of torsional elastic waves propagating in a circular rod whose material properties vary periodically as harmonic functions of the axial coordinate. An approximate solution for the phase speed has been obtained by using the perturbation technique for sinusoidal modulation of small amplitude. This solution shows that the wave speed in the nonuniform rod is dependent on the wave frequency as well as the periodic variation of the material properties. It implies that the torsional waves considered in this paper are dispersive even in the fundamental mode.

  • PDF

PERMANENCE FOR THREE SPECIES PREDATOR-PREY SYSTEM WITH DELAYED STAGE-STRUCTURE AND IMPULSIVE PERTURBATIONS ON PREDATORS

  • Zhang, Shuwen;Tan, Dejun
    • Journal of applied mathematics & informatics
    • /
    • 제27권5_6호
    • /
    • pp.1097-1107
    • /
    • 2009
  • In this paper, three species stage-structured predator-prey model with time delayed and periodic constant impulsive perturbations of predator at fixed times is proposed and investigated. We show that the conditions for the global attractivity of prey(pest)-extinction periodic solution and permanence of the system. Our model exhibits a new modelling method which is applied to investigate impulsive delay differential equations. Our results give some reasonable suggestions for pest management.

  • PDF

A nonlinear Study for the Schlogl Models with some Kinds of External Input. I.

  • Moon H. Ryu;Dong J. Lee;Il D. Kim
    • Bulletin of the Korean Chemical Society
    • /
    • 제12권4호
    • /
    • pp.383-387
    • /
    • 1991
  • A new perturbation theory called as star expansion method is used to obtain the nonlinear retarded solution of the Schlogl models with some kinds of external input. The approximate nonlinear solutions are compared with the exact solution, linear solutions, and those obtained by the Feynman method.

반복적 IRS를 이용한 구조 시스템 식별 (Structural System Identification by Iterative IRS)

  • 백승민;김현기;김기욱;조맹효
    • 한국전산구조공학회논문집
    • /
    • 제20권1호
    • /
    • pp.65-73
    • /
    • 2007
  • 구조 역섭동 문제에서, 신뢰할 만한 결과를 얻기 위해서는 정의되지 않은 모든 자유도가 미지변수로 간주되기 때문에 많은 전산자원이 필요하다. 본 연구에서는 축소시스템 기법과의 연동을 통해 정의되지 않은 자유도를 축소시스템에서 정의된 자유도 정보로 대체함으로써 해의 정확성과 계산의 효율성을 확보하는 기법을 제안한다. 일반적으로 구조 시스템을 축소할 경우, 시스템 축소변환 행렬에 오차가 포함되게 된다. 이 오차로 인해 축소기법을 적용하여 역섭동 문제의 정확한 해를 구하는 것은 쉽지 않은 문제이다. 이러한 문제를 해결하기 위해서 자유도 변환행렬을 매 단계마다 개선하는 반복적 축소 시스템 기법을 적용한다. 자유도 기반 축소시스템의 신뢰성은 주자유도 선정 위치와 변환행렬의 반복 계산 횟수에 의해 결정되며, 변환행렬의 반복 계산을 줄이기 위해서는 시스템 구축 초기에 주자유도가 잘 선정되어야 한다. 따라서, 본 연구에서는 축소모델의 정확도를 향상시키고 변환 행렬의 반복 계산을 최소화하기 위해 2단계 축소기법을 적용하여 주자유도 위치를 선정한다. 최종적으로 수치예제를 통해서 반복적 역섭동법의 효용성을 확인한다.

A Perturbation Based Method for Variational Inequality over Convex Polyhedral

  • Park, Koo-Hyun
    • 한국경영과학회지
    • /
    • 제20권2호
    • /
    • pp.125-137
    • /
    • 1995
  • This paper provides a locally convergent algorithm and a globally convergent algorithm for a variational inequality problem over convex polyhedral. The algorithm are based on the B (ouligand)-differentiability of the solution of a nonsmooth equation derived from the variational in-equality problem. Convergences of the algorithms are achieved by the results of Pang[3].

  • PDF

The Comparison of the Classical Keplerian Orbit Elements, Non-Singular Orbital Elements (Equinoctial Elements), and the Cartesian State Variables in Lagrange Planetary Equations with J2 Perturbation: Part I

  • Jo, Jung-Hyun;Park, In-Kwan;Choe, Nam-Mi;Choi, Man-Soo
    • Journal of Astronomy and Space Sciences
    • /
    • 제28권1호
    • /
    • pp.37-54
    • /
    • 2011
  • Two semi-analytic solutions for a perturbed two-body problem known as Lagrange planetary equations (LPE) were compared to a numerical integration of the equation of motion with same perturbation force. To avoid the critical conditions inherited from the configuration of LPE, non-singular orbital elements (EOE) had been introduced. In this study, two types of orbital elements, classical Keplerian orbital elements (COE) and EOE were used for the solution of the LPE. The effectiveness of EOE and the discrepancy between EOE and COE were investigated by using several near critical conditions. The near one revolution, one day, and seven days evolutions of each orbital element described in LPE with COE and EOE were analyzed by comparing it with the directly converted orbital elements from the numerically integrated state vector in Cartesian coordinate. As a result, LPE with EOE has an advantage in long term calculation over LPE with COE in case of relatively small eccentricity.