• Title/Summary/Keyword: perturbation equations

Search Result 307, Processing Time 0.028 seconds

Elastic analysis of pressurized thick truncated conical shells made of functionally graded materials

  • Ghannad, M.;Nejad, M. Zamani;Rahimi, G.H.;Sabouri, H.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.1
    • /
    • pp.105-126
    • /
    • 2012
  • Based on the first-order shear deformation theory (FSDT), and the virtual work principle, an elastic analysis for axisymmetric clamped-clamped Pressurized thick truncated conical shells made of functionally graded materials have been performed. The governing equations are a system of nonhomogeneous ordinary differential equations with variable coefficients. Using the matched asymptotic method (MAM) of the perturbation theory, these equations could be converted into a system of algebraic equations with variable coefficients and two systems of differential equations with constant coefficients. For different FGM conical angles, displacements and stresses along the radius and length have been calculated and plotted.

A NUMERICAL METHOD FOR SINGULARLY PERTURBED SYSTEM OF SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS OF CONVECTION DIFFUSION TYPE WITH A DISCONTINUOUS SOURCE TERM

  • Tamilselvan, A.;Ramanujam, N.
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1279-1292
    • /
    • 2009
  • In this paper, a numerical method that uses standard finite difference scheme defined on Shishkin mesh for a weakly coupled system of two singularly perturbed convection-diffusion second order ordinary differential equations with a discontinuous source term is presented. An error estimate is derived to show that the method is uniformly convergent with respect to the singular perturbation parameter. Numerical results are presented to illustrate the theoretical results.

  • PDF

Approximate solution of fuzzy quadratic Riccati differential equations

  • Tapaswini, Smita;Chakraverty, S.
    • Coupled systems mechanics
    • /
    • v.2 no.3
    • /
    • pp.255-269
    • /
    • 2013
  • This paper targets to investigate the solution of fuzzy quadratic Riccati differential equations with various types of fuzzy environment using Homotopy Perturbation Method (HPM). Fuzzy convex normalized sets are used for the fuzzy parameter and variables. Obtained results are depicted in term of plots to show the efficiency of the proposed method.

Robust Kalman Filtering with Perturbation Estimation Process-for Uncertain Systems (섭동 추정 프로세스를 이용한 불확실 시스템에 대한 강인 칼만 필터링 기법)

  • Kwon Sang-Joo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.201-207
    • /
    • 2006
  • A robust Kalman filtering method for uncertain stochastic systems is suggested by adopting a perturbation estimation process which is to reconstruct total uncertainty with respect to the nominal state transition equation. The predictor and corrector of discrete Kalman filter are reformulated with the perturbation estimator. Successively, the state and perturbation estimation error dynamics and the corresponding error covariance propagation equations are derived as well. Finally we have the recursive algorithm of Combined Kalman Filter-Perturbation Estimator (CKF). The proposed combined Kalman filter-perturbation estimator has the property of integrating innovations and the adaptation capability to system uncertainties. A numerical example is shown to demonstrate the effectiveness of the proposed scheme.

Estimations of Offshore Structure Damages by Modal Perturbation Method (Modal-Perturbation 기법을 이용한 항만 구조물의 손상부위 추정)

  • 조병완;한상주
    • Computational Structural Engineering
    • /
    • v.9 no.4
    • /
    • pp.209-217
    • /
    • 1996
  • An Inverse modal perturbation method was applied to estimate the assessments of the damages at the large-scaled marine structure, such as pier or dolphin, from the structural dynamic natural frequencies and mode shape. Vibrations of structural stiffness, natural frequencies and mode shapes from the eigenvalue analysis lead to the modal peturbation equations, which were considered with a second order term. This paper estimates the assessments of the damages for the structure with the decreased stiffness and shows the convergence of perturbation equation.

  • PDF

Statistical Analysis of Random Parameter Systems with Perturbation Method (퍼터베이션 방법을 이용한 랜덤 파라미터 시스템의 통계적 해석)

  • 김영균
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.19 no.2
    • /
    • pp.1-6
    • /
    • 1982
  • This paper reviews and describes some applications of perturbation theory in the practical analysis of linear systems which involve random parameters. Statistical measures of the system outputs are derived in terms of statistical measures of the system parameters and inputs (i.e., in the way of perturbed linear operator equations). Perturbed state transition matrix is also derived. With simple first-order and second-order linear system models, we compare the accuracy of perturbation results with the exact ones. And the convergence of perturbation series is also investigated.

  • PDF

Automatic Ball Balancer for Vibration Reduction of Rotating Machines (회전기계의 진동저감을 위한 자동볼평형장치)

  • Chung, Jin-Tai
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.59-68
    • /
    • 2005
  • In this study, we establish a theory for dynamic behaviors of an automatic ball balancer, analyze its dynamic characteristics, and provide its design guide line. Equations of motion are derived by using the polar coordinate system instead of the rectangular coordinate system which was previously used in other researches. After non-dimensionalization of the equations, the perturbation method is applied to locate the equilibrium positions and to obtain the linearized equations of motion around the equilibrium positions. The Eigenvalue problem is used to verify the dynamic stability around the equilibrium positions. On the other hand, the time responses are computed from the nonlinear equations of motion by using a time integration method.

  • PDF

Dynamic Analysis of a Pendulum Automatic Dynamic Balancer (펜들럼 자동 평형 장치의 동특성 해석)

  • Lee, Jin-Woo;Sohn, Jin-Seung;Joseph Cho;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.396.2-396
    • /
    • 2002
  • Dynamic stability and behavior are analyzed fur Pendulum Automatic Dynamic Balancer which is a device to reduce an unbalanced mass of rotors. The nonlinear equations of motion for a system including a Pendulum Balancer are derived with respect to polar coordinate by Lagrange's equations. The perturbation method is applied to find the equilibrium positions and to obtain the linear variation equations. Based on linearized equations, the dynamic stability of the system around the equilibrium positions is investigated by the eigenvalue problem. (omitted)

  • PDF

Vibration Analysis of an Automatic Ball Balancer (자동 볼 평형장치의 진동 해석)

  • 박준민;노대성;정진태
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.363-370
    • /
    • 1999
  • In this study, we establish a theory for dynamic behaviors of an automatic ball balancer, analyze its dynamic characteristics, and provide its design guide line. Equations of motion are derived by using the polar coordinate system instead of the rectangular coordinate system which was previously used in other researches. After nondimensionalization of the equations, the perturbation method is applied to locate the equilibrium positions and to obtain the linearized equations of motion around the equilibrium positions. The Eigenvalue problem is used to verify the dynamic stability around the equilibrium positions. On the other hand, the time responses are computed from the nonlinear equations of motion by using a time integration method.

  • PDF