• Title/Summary/Keyword: perturbation equations

Search Result 307, Processing Time 0.024 seconds

Thermal post-buckling analysis of porous functionally graded pipes with initial geometric imperfection

  • Xu, Jia-Qin;She, Gui-Lin
    • Geomechanics and Engineering
    • /
    • v.31 no.3
    • /
    • pp.329-337
    • /
    • 2022
  • In this paper, the thermal post-buckling characteristics of functionally graded (FG) pipes with initial geometric imperfection are studied. Considering the influence of initial geometric defects, temperature and geometric nonlinearity, Euler-Lagrange principle is used to derive the nonlinear governing equations of the FG pipes. Considering three different boundary conditions, the two-step perturbation method is used to solve the nonlinear governing equations, and the expressions of thermal post-buckling responses are also obtained. Finally, the correctness of this paper is verified by numerical analyses, and the effects of initial geometric defects, functional graded index, elastic foundation, porosity, thickness of pipe and boundary conditions on thermal post-buckling response are analyzed. It is found that, bifurcation buckling exists for the pipes without initial geometric imperfection. In contrast, there is no bifurcation buckling phenomenon for the pipes with initial geometric imperfection. Meanwhile, the elastic stiffness can significantly improve thermal post-buckling load and thermal post-buckling strength. The larger the porosity, the greater the thermal buckling load and the thermal buckling strength.

Steady Laminar Free Convection Heat Transfer from a Sphere with Uniform Surface Heat Flux (표면의 열속이 일정한 구로 부터의 정상층류 자연대류 열전달)

  • Son Byung Jin;Lee Kwan Soo;Choi Hyung Chul;Lee Wan Ik
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.11 no.4
    • /
    • pp.1-5
    • /
    • 1982
  • In this paper, a study is made of the steady laminar free convection boundary-layer equations on a sphere with uniform surface heat flux. To solve the boundary-layer equations, well-known Pohlhausen's simiarity solution for vertical plates is adopted just the same for spherical bodies by introducing twonondimensional parametric functions, so called azimuth functions. To determine the values of the azimuth functions which are expressed in series at the two points (the upper stagnation point and the equator), trial and error method is required. It is concluded that the heat transfer results are in good agreement with obtained from perturbation method and Von Karman-Pohlhausen method within the steady laminar free convection region for Pr=0.70.

  • PDF

Large-Signal Modulation Characteristics of a Diode Laser (다이오드 레이저의 대신호 변조특성)

  • Lee, Chang-Hee;Yoon, Tae-Hoon;Shin, Sang-Yung
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.1
    • /
    • pp.91-100
    • /
    • 1986
  • The nonlinear rate equations are solved analytically by using the singular perturbation method to study effects of the spontaneous emission factor and the photon lifetime on the primary resonance and the first subharmonic generation(i.e., the onset of the periocd-doubling route to chaos). By large signal modulation of Hitachi CSP laser HLP 1400, the resonance frequency shift than 100 ps with 1 GHz repetition rate are generated. The experimental observations are in reasonable agreement with the theoretical results obtained using measured parameters of the rate equations.

  • PDF

COMPUTATIONAL METHOD FOR SINGULARLY PERTURBED PARABOLIC REACTION-DIFFUSION EQUATIONS WITH ROBIN BOUNDARY CONDITIONS

  • GELU, FASIKA WONDIMU;DURESSA, GEMECHIS FILE
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.1_2
    • /
    • pp.25-45
    • /
    • 2022
  • In this study, the non-standard finite difference method for the numerical solution of singularly perturbed parabolic reaction-diffusion subject to Robin boundary conditions has presented. To discretize temporal and spatial variables, we use the implicit Euler and non-standard finite difference method on a uniform mesh, respectively. We proved that the proposed scheme shows uniform convergence in time with first-order and in space with second-order irrespective of the perturbation parameter. We compute three numerical examples to confirm the theoretical findings.

FITTED OPERATOR ON THE CRANK-NICOLSON SCHEME FOR SOLVING A SMALL TIME DELAYED CONVECTION-DIFFUSION EQUATIONS

  • TEFERA, DAGNACHEW MENGSTIE;TIRUNEH, AWOKE ANDARGIE;DERESE, GETACHEW ADAMU
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.3_4
    • /
    • pp.491-505
    • /
    • 2022
  • This paper is concerned with singularly perturbed convection-diffusion parabolic partial differential equations which have time-delayed. We used the Crank-Nicolson(CN) scheme to build a fitted operator to solve the problem. The underling method's stability is investigated, and it is found to be unconditionally stable. We have shown graphically the unstableness of CN-scheme without fitting factor. The order of convergence of the present method is shown to be second order both in space and time in relation to the perturbation parameter. The efficiency of the scheme is demonstrated using model examples and the proposed technique is more accurate than the standard CN-method and some methods available in the literature, according to the findings.

Thermal post-buckling and primary resonance of porous functionally graded beams: Effect of elastic foundations and geometric imperfection

  • Jia-Qin Xu;Gui-Lin She
    • Computers and Concrete
    • /
    • v.32 no.6
    • /
    • pp.543-551
    • /
    • 2023
  • In this article, thermal post-buckling and primary resonance of the porous functionally graded material (FGM) beams in thermal environment considering the geometric imperfection are studied, the material properties of FGM beams are assumed to vary along the thickness of the beam, meanwhile, the porosity volume fraction, geometric imperfection, temperature, and the elastic foundation are considered, using the Euler-Lagrange equation, the nonlinear vibration equations are derived, after the dimensionless processing, the dimensionless equations of motion can be obtained. Then, the two-step perturbation method is applied to solve the vibration problems, the resonance and thermal post-buckling response relations are obtained. Finally, the functionally graded index, the porosity volume fraction, temperature, geometric imperfection, and the elastic foundation on the resonance behaviors of the FGM beams are presented. It can be found that these parameters can influence the thermal post-buckling and primary resonance problems.

A New Method of determining Initial Conditions for Satellite Formation Flying

  • Lim, Hyung-Chul;Bang, Hyo-Choong;Park, Kwan-Dong;Park, Pil-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.2
    • /
    • pp.1-8
    • /
    • 2003
  • Satellite formation flying is the placing micro-satellites with the same mission into nearby orbits to form a cluster. Clohessy-Wiltshire equations are used to describe the relative motion and control strategies between satellites within a cluster, which are known as Hill's equations. Even though Hill's equations are powerful in determining initial conditions for the satellite formation flying, they can not accurately express the relative motion under J2 perturbation. Some methods have been developed for the determination of initial conditions to avoid limits of Hill's equation. This paper gives a new method of determining initial conditions using mean elements. For this research mean elements were transformed to osculating elements using Brouwer's theory and the orbit was propaeated with the consideration of J2-J8 to get a relative position. The results show that satellites within a cluster are maintained in the desired boundary for long period and the method is effective on a fuel saving for satellite formation flying.

Stability analysis of the rotating and stationary grooved journal bearings (정지홈과 회전홈을 갖는 저널베어링의 안정성 평가)

  • Lee, M.H.;Lee, J.H.;Jang, G.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.141-146
    • /
    • 2013
  • This research investigates the stability analysis for the rotating and the stationary grooved journal bearing. The dynamic coefficients of the journal bearing are calculated by using FEM and the perturbation method. When journal bearing is in whirling motion, the dynamic coefficients have time-varying components as a sine wave due to the reaction force of oil film toward the center of journal even in the steady state. The solutions for the equations of motion can be assumed as the Fourier series expansion. The equations of motion can be rewritten as the linear algebraic equations with respect to the Fourier coefficients. Then, stability of the grooved journal bearing can be calculated by Hill's infinite determinant. The periodic function of dynamic coefficients is derived using Fourier Fast Transform(FFT).The stability of journal bearing is determined as rotating speed increases and the stability of rotating grooved journal bearing is compared and discussed with the stability of stationary grooved journal bearing.

  • PDF

A Dispersion and Characteristic Analysis for the One-dimensional Two-fluid Mode with Momentum Flux Parameters

  • Song, Jin-Ho;Kim, H.D.
    • Nuclear Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.409-422
    • /
    • 2001
  • The dynamic character of a system of the governing differential equations for the one- dimensional two-fluid model, where the momentum flux parameters are employed to consider the velocity and void fraction distribution in a flow channel, is investigated. In response to a perturbation in the form of a'traveling wave, a linear stability analysis is peformed for the governing differential equations. The expression for the growth factor as a function of wave number and various flow parameters is analytically derived. It provides the necessary and sufficient conditions for the stability of the one-dimensional two-fluid model in terms of momentum flux parameters. It is demonstrated that the one-dimensional two-fluid model employing the physical momentum flux parameters for the whole range of dispersed flow regime, which are determined from the simplified velocity and void fraction profiles constructed from the available experimental data and $C_{o}$ correlation, is stable to the linear perturbations in all wave-lengths. As the basic form of the governing differential equations for the conventional one-dimensional two-fluid model is mathematically ill posed, it is suggested that the velocity and void distributions should be properly accounted for in the one-dimensional two-fluid model by use of momentum flux parameters.s.

  • PDF

An Investigation of Dynamic Stability of Self-Compensating Dynamic Balancer (자기보상 동적균형기의 동적안정성 연구)

  • Lee, Jongkil
    • Journal of KSNVE
    • /
    • v.4 no.4
    • /
    • pp.435-442
    • /
    • 1994
  • Self-Compensating Dynamic Balancer (SCDB) is composed of a circular disk with a groove containing spherical balls and a low viscosity damping fluid. To investigate the stability of the motion equations these equations are perturbed and the resulting perturbation equations are analyzed further to determine whether the perturbations grow or decay with dimensionless time. Based on the results of stability investigation, ball positions that result in a balanced system are stable above the critical speed for .betha.' = 3.8. At critical speed the perturbed motion is said to be stable for .betha.' = 23. However, the system is unstable below critical speed in any case of .betha.'.

  • PDF