Browse > Article
http://dx.doi.org/10.12989/gae.2022.31.3.329

Thermal post-buckling analysis of porous functionally graded pipes with initial geometric imperfection  

Xu, Jia-Qin (College of Mechanical and Vehicle Engineering, Chongqing University)
She, Gui-Lin (College of Mechanical and Vehicle Engineering, Chongqing University)
Publication Information
Geomechanics and Engineering / v.31, no.3, 2022 , pp. 329-337 More about this Journal
Abstract
In this paper, the thermal post-buckling characteristics of functionally graded (FG) pipes with initial geometric imperfection are studied. Considering the influence of initial geometric defects, temperature and geometric nonlinearity, Euler-Lagrange principle is used to derive the nonlinear governing equations of the FG pipes. Considering three different boundary conditions, the two-step perturbation method is used to solve the nonlinear governing equations, and the expressions of thermal post-buckling responses are also obtained. Finally, the correctness of this paper is verified by numerical analyses, and the effects of initial geometric defects, functional graded index, elastic foundation, porosity, thickness of pipe and boundary conditions on thermal post-buckling response are analyzed. It is found that, bifurcation buckling exists for the pipes without initial geometric imperfection. In contrast, there is no bifurcation buckling phenomenon for the pipes with initial geometric imperfection. Meanwhile, the elastic stiffness can significantly improve thermal post-buckling load and thermal post-buckling strength. The larger the porosity, the greater the thermal buckling load and the thermal buckling strength.
Keywords
boundary conditions; elastic foundation; initial geometric imperfection; porous functionally graded pipes; thermal post-buckling;
Citations & Related Records
Times Cited By KSCI : 18  (Citation Analysis)
연도 인용수 순위
1 Babaei, H.(2021b), "Large deflection analysis of fg-cnt reinforced composite pipes under thermal-mechanical coupling loading", Structures, 34, 886-900. http://doi.org/10.1016/j.istruc.2021.07.091.   DOI
2 Babaei, H. and Eslami, M. (2021b), "Thermally induced nonlinear stability and imperfection sensitivity of temperature- and size-dependent fg porous micro-tubes", Int. J. Mech. Mater. Design, 1-21. http://doi.org/10.1007/s10999-021-09531-3.   DOI
3 Ebrahimi, F. and Farazmandnia, N. (2018), "Vibration analysis of functionally graded carbon nanotube-reinforced composite sandwich beams in thermal environment", Adv. Aircraft Sp. Sci., 5(1), 107-128. https://doi.org/10.12989/aas.2018.5.1.107.   DOI
4 Ghandourah, E.E., Eltaher, M.A., Ahmed, H.M., Attia, M.A. and Abdraboh, A.M. (2021), "Free vibration of porous fg nonlocal modified couple nanobeams via a modified porosity model", Adv. Nano Res., 11(4). http://doi.org/10.12989/anr.2021.11.4.405.   DOI
5 Hendi, A., Eltaher, M.A., Mohamed, S.A. and Attia, M. (2022), "Nonlinear thermal vibration of pre/post-buckled two-dimensional FGM tapered microbeams based on a higher order shear deformation theory", Steel Compos. Struct., 41(6), 787-802. https://doi.org/10.12989/scs.2022.41.6.787.   DOI
6 Mohamed, N., Mohamed, S.A. and Eltaher, M.A. (2022), "Nonlinear static stability of imperfect bio-inspired helicoidal composite beams", Mathematics, 10(7). http://doi.org/10,7. 10.3390/math10071084.   DOI
7 Akgoz, B. and Civalek, O. (2017), "Effects of thermal and shear deformation on vibration response of functionally graded thick composite microbeams", Compos. Part B: Eng., 129, 77-87. https://doi.org/10.1016/j.compositesb.2017.07.024.   DOI
8 Golmakani, M.E., Malikan, M. and Pour, S.G. (2021), "Bending analysis of functionally graded nanoplates based on a higher-order shear deformation theory using dynamic relaxation method", Continuum Mech. Thermodynam., https://doi.org/10.1007/s00161-021-00995-4.   DOI
9 Hadji, L., Meziane, M. and Safa, A. (2018), "A new quasi-3d higher shear deformation theory for vibration of functionally graded carbon nanotube-reinforced composite beams resting on elastic foundation", Struct. Eng. Mech., 66(6), 771-781. https://doi.org/10.12989/sem.2018.66.6.771.   DOI
10 Lu, L., She, G.L. and Guo, X. (2021), "Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199, 106428. https://doi.org/10.1016/j.ijmecsci.2021.106428.   DOI
11 Mohamed, N., Mohamed, S. and Eltaher, M. (2020), "Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model", Eng. Comput., 37(4). http://doi.org/10.1007/s00366-020-00976-2.   DOI
12 She, G.L., Ding, H.X. and Zhang, Y.W. (2022), "Wave propagation in a FG circular plate via the physical neutral surface concept", Struct. Eng. Mech., 82(2), 225-232. https://doi.org/10.12989/sem.2022.82.2.225.   DOI
13 She, G.L. (2021), "Guided wave propagation of porous functionally graded plates: The effect of thermal loadings", J. Therm. Stresses, 44(10), 1289-1305. https://doi.org/10.1080/01495739.2021.1974323.   DOI
14 Shen, H.S. (2014), "Postbuckling of FGM cylindrical panels resting on elastic foundations subjected to axial compression under heat conduction", Int. J. Mech. Sci., 89, 453-461. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000439.   DOI
15 Pinnola, F.P., Vaccaro, M.S., Barretta, R., Francesco, M. and Ruta, G. (2022), "Elasticity problems of beams on reaction-driven nonlocal foundation", Arch. Appl. Mech., 1-31. http://doi.org/10.1007/s00419-022-02161-x.   DOI
16 Amar, L.H.H., Kaci, A., Yeghnem, R. and Tounsi, A. (2018), "A new four-unknown refined theory based on modified couplestress theory for size-dependent bending and vibration analysis of functionally graded micro-plate", Steel Compos. Struct., 26(1), 89-102. https://doi.org/10.12989/scs.2018.26.1.089.   DOI
17 Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Method. Eng., 47(1-3), 663-684. http://doi.org/10.1002/(SICI)10970207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8.   DOI
18 She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphenenanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.   DOI
19 Zhang, Y.Y., Wang, Y.X., Zhang, X., Shen, H.M. and She, G.L. (2021), "On snap-buckling of FG-CNTR curved nanobeams considering surface effects", Steel Compos. Struct., 38(3), 293-304. https://doi.org/10.12989/scs.2021.38.3.293.   DOI
20 Attia, M.A. and Mohamed, S.A. (2020a), "Thermal vibration characteristics of pre/post-buckled bi-directional functionally graded tapered microbeams based on modified couple stress Reddy beam theory", Eng. Comput., https://doi.org/10.1007/s00366-020-01188-4.   DOI
21 Dehrouyeh-Semnani, A.M., Dehdashti, E., Yazdi, M. and Nikkhah-Bahrami, M. (2019), "Nonlinear thermo-resonant behavior of fluid-conveying FG pipes", Int. J. Eng. Sci., 144, 103141. https://doi.org/10.1016/j.ijengsci.2019.103141.   DOI
22 Asiri, S.A., Akba, E.D. and Eltaher, M. (2020), "Damped dynamic responses of a layered functionally graded thick beam under a pulse load", Struct. Eng. Mech., 75(6), 713-722. http://doi.org/ 10.12989/sem.2020.75.6.713.   DOI
23 Alnujaie, A., Akba, E.D., Eltaher, M. and Assie, A. (2021). "Forced vibration of a functionally graded porous beam resting on viscoelastic foundation", Geomech. Eng., 24(1). http://doi.org/10.12989/gae.2021.24.1.091.   DOI
24 Akba, E.D., Bashiri, A.H., Assie, A.E. and Eltaher, M.A. (2021), "Dynamic analysis of thick beams with functionally graded porous layers and viscoelastic support", J. Vib. Control, 27(13-14), 1644-1655. http://doi.org/10.1177/1077546320947302.   DOI
25 Attia, M.A. and Mohamed, S.A. (2020b), "Nonlinear thermal buckling and postbuckling analysis of bidirectional functionally graded tapered microbeams based on Reddy beam theory", Eng. Comput., https://doi.org/10.1007/s00366-020-01080-1.   DOI
26 Babaei, H. (2021a), "Thermoelastic buckling and post-buckling behavior of temperature-dependent nanocomposite pipes reinforced with CNTs", Eur. Phys. J. Plus, 136(10). http://doi.org/10.1140/epjp/s13360-021-01992-x.   DOI
27 Babaei, H. (2021c), "Nonlinear analysis of size-dependent frequencies in porous fg curved nanotubes based on nonlocal strain gradient theory", Eng. With Comput., http://doi.org/10.1007/s00366-021-01317-7.   DOI
28 Babaei, H. and Eslami, M. (2021a). "Nonlinear analysis of thermal-mechanical coupling bending of clamped fg porous curved micro-tubes", J. Therm. Stresses, 1-24. http://doi.org/10.1080/01495739.2020.1870417.   DOI
29 Ding, H.X. and She, G.L. (2021), "A higher-order beam model for the snap-buckling analysis of FG pipes conveying fluid", Struct. Eng. Mech., 80(1), 63-72. https://doi.org/10.12989/sem.2021.80.1.063.   DOI
30 Emam, S. (2016), "Buckling and postbuckling of composite beams in hygrothermal environments", Compos. Struct., 152, 665-675. http://doi.org/10.1016/j.compstruct.2016.05.029.   DOI
31 Fu, Y., Zhong, J., Shao, X. and Chen, Y. (2015), "Thermal postbuckling analysis of functionally graded tubes based on a refined beam model", Int. J. Mech. Sci., 96, 58-64. http://doi.org/10.1016/j.ijmecsci.2015.03.019.   DOI
32 Zhang,Y.W. and She,G.L. (2022), "Wave propagation and vibration of FG pipes conveying hot fluid", Steel Compos. Struct., 42(3), 397-405. https://doi.org/10.12989/scs.2022.42.3.397.   DOI
33 Zenkour, A.M. and Radwan, A.F. (2019), "Bending response of FG plates resting on elastic foundations in hygro thermal environment with porosities", Compos. Struct., 213, 133-143. https://doi.org/10.1016/j.compstruct.2019.01.065.   DOI
34 Zhao, J.L., Chen, X., She, G.L., Jing, Y., Bai, R.Q., Yi, J., Pu, H.Y., and Luo, J. (2022), "Vibration characteristics of functionally graded carbon nanotube-reinforced composite double-beams in thermal environments", Steel Compos. Struct., 43(6), 797-808. https://doi.org/10.12989/scs.2022.43.6.797.   DOI
35 She, G.L., Yuan, F.G. and Ren, Y.R. (2017a), "Nonlinear analysis of bending, thermal buckling and post-buckling for functionally graded tubes by using a refined beam theory", Compos. Struct., 165, 74-82. https://doi.org/10.1016/j.compstruct.2017.01.013.   DOI
36 She, G.L., Yuan, F.G., Ren, Y.R. and Xiao, W.S. (2017b), "On buckling and postbuckling behavior of nanotubes", Int. J. Eng. Sci., 121, 130-142. https://doi.org/10.1016/j.ijengsci.2017.09.005.   DOI
37 Shen, H.S. (2013), A Two-Step Perturbation Method in Nonlinear Analysis of Beams, Plates and Shells, John Wiley & Sons Inc., Singapore.