References
- S. Kumar and S.C.S. Rao, A robust overlapping Schwarz domain decomposition algorithm for time-dependent singularly perturbed reaction-diffusion problems, J. Comput. Appl. Math. 261 (2014), 127-138. https://doi.org/10.1016/j.cam.2013.10.053
- S.C.S. Rao, S. Kumar and J. Singh, A discrete Schwarz waveform relaxation method of higher order for singularly perturbed parabolic reaction-diffusion problems, J. Math. Chem. 58 (2020), 574-594. https://doi.org/10.1007/s10910-019-01086-1
- P. Mishra, K.K. Sharma, A.K. Pani, G. Fairweather, High-order discrete-time orthogonal spline collocation methods for singularly perturbed 1D parabolic reaction-diffusion problems, Numer Methods Partial Differential Eq. 36 (2019), 495-523. https://doi.org/10.1002/num.22438
- C. Clavero and J.L. Gracia, A higher order uniformly convergent method with Richardson extrapolation in time for singularly perturbed reaction-diffusion parabolic problems, J. Comput. Appl. Math. 252 (2013), 75-85. https://doi.org/10.1016/j.cam.2012.05.023
- J.L. Gracia and E. O'Riordan, Numerical approximation of solution derivatives in the case of singularly perturbed time dependent reaction-diffusion problems, J. Comput. Appl. Math. 273 (2015), 13-24. https://doi.org/10.1016/j.cam.2014.05.023
- S. Natesan and S. Gowrisankar, Robust numerical scheme for singularly perturbed parabolic initial-boundary-value problems on equidistributed mesh, CMES 88 (2012), 245-267.
- T.A. Bullo, G.F. Duressa and G.A. Delga, Accelerated fitted operator finite difference method for singularly perturbed parabolic reaction-diffusion problems, Computational Methods for Differential Equations 3 (2021). 886-898.
- R. Ishwariya, J.J.H. Miller and S.A. Valarmathi, parameter uniform essentially first order convergent numerical method for a parabolic singularly perturbed differential equation of reaction-diffusion type with initial and Robin boundary conditions, arXiv:1906.01598v1 [math.NA] 4 Jun 2019.
- K. Sunil, Sumit and H. Ramos, Parameter-uniform approximation on equidistributed meshes for singularly perturbed parabolic reaction-diffusion problems with Robin boundary conditions, Applied Mathematics and Computation 392 (2021), DOI:10.1016/j.amc.2020.125677.
- F.W. Gelu and G.F. Duressa, A uniformly convergent collocation method for singularly perturbed delay parabolic reaction-diffusion problem, Abstract and Applied Analysis 2021 (2021), 11 pages.
- M.M. Woldaregay, W.T. Aniley and G.F. Duressa, Novel numerical scheme for singularly perturbed time delay convection-diffusion equation, Advances in Mathematical Physics 2021 (2021), 13 pages.
- D.A. Turuna, M.M. Woldaregay and G.F. Duressa, Uniformly convergent numerical method for singularly perturbed convection-diffusion problems, Kyungpook National University 60 (2020), 629-645.
- M.M. Woldaregay and G.F. Duressa, Higher-order uniformly convergent numerical scheme for singularly perturbed differential difference equations with mixed small shifts, International Journal of Differential Equations 2020 (2020), 15 pages.
- M.M. Woldaregay and G.F. Duressa, Fitted numerical scheme for solving singularly perturbed parabolic delay partial differential equations, Tamkang Journal of Mathematics 53 (2022), DOI:10.5556/j.tkjm.53.2022.3638.
- R.E. Mickens, Nonstandard finite difference models of differential equations, World Scientific, Singapore, 1994.
- R.E. Mickens, Advances in the applications of nonstandard finite difference schemes, World Scientific, Singapore, 2005.
- K.C. Patidar and K.K. Sharma, Uniformly convergent nonstandard finite difference methods for singularly perturbed differential-difference equations with delay and advance, Int. J. Numer. Methods Eng. 66 (2006), 272-296. https://doi.org/10.1002/nme.1555
- R.E. Mickens, Calculation of denominator functions for nonstandard finite difference schemes for differential equations satisfying a positivity condition, Numer Methods Partial Differential Eq. 23 (2007), 672-691. https://doi.org/10.1002/num.20198
- J.M.S. Lubuma and K.C. Patidar, Uniformly convergent non-standard finite difference methods for self-adjoint singular perturbation problems, J. Comput. Appl. Math. 191 (2006), 228-238. https://doi.org/10.1016/j.cam.2005.06.039
- J.B. Munyakazi and K.C. Patidar, A fitted numerical method for singularly perturbed parabolic reaction-diffusion problems, Computat. Appl. Math. 32 (2013), 509-519. https://doi.org/10.1007/s40314-013-0033-7