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FITTED OPERATOR ON THE CRANK-NICOLSON SCHEME

FOR SOLVING A SMALL TIME DELAYED

CONVECTION-DIFFUSION EQUATIONS

DAGNACHEW MENGSTIE TEFERA∗, AWOKE ANDARGIE TIRUNEH, GETACHEW
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Abstract. This paper is concerned with singularly perturbed convection-

diffusion parabolic partial differential equations which have time-delayed.
We used the Crank-Nicolson(CN) scheme to build a fitted operator to solve

the problem. The underling method’s stability is investigated, and it is

found to be unconditionally stable. We have shown graphically the unsta-
bleness of CN-scheme without fitting factor. The order of convergence of

the present method is shown to be second order both in space and time

in relation to the perturbation parameter. The efficiency of the scheme is
demonstrated using model examples and the proposed technique is more

accurate than the standard CN-method and some methods available in the

literature, according to the findings.
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1. Introduction

A time delayed singularly perturbed differential equation is a differential equa-
tion that have at least one delay term in the time variable and the coefficient
of highest order derivative is a small parameter. Delay differential equations
are essential in modeling real-world phenomena and computational scientists
can pay more attention to them. Due to the appearance of delay term in the
mathematical modeling in different fields, they provide a better approximation
of the observed phenomena, but computing their solutions has been major chal-
lenge. To explain the dynamics of certain biological systems, some singularly
perturbed diffusive models have been developed in biology. In Many real-world
applications they have small diffusion parameter’s; for instant, Murray [11]. in
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blood the order of diffusion coefficient for hemoglobin molecules and oxygen are
10−7cm2s−1 and 10−5cm2s−1 respectively.

Boundary layers occur in the neighborhoods of the boundary of the domain,
where the solution of singularly perturbed problems has a rapidly change. A
boundary layer, either regular or parabolic form, may appear away from any
domain corner. The boundary layer is parabolic type if the reduced problem’s
characteristics curve is parallel to the boundary, otherwise it is regular type
Shishkin et al, [5].

Because of the rapidly changes (steep gradients) in the solution of SPP, the nu-
merical schemes based on the classical method on uniform meshes are insufficient
for solving boundary layer problems Kadalbajoo et al, [10]. Due to insufficient
of the classical method the concept of an ϵ-uniform method are developed, which
is a convergent numerical technique for solving a singularly perturbed problems
independent of the size of the singular perturbation parameter ϵ.

If regular boundary layers are present, then applying an appropriate uniform
mesh fitted finite difference method can often give ϵ- uniform method. Accord-
ing to Shishkin et al. [12], this method is not practical if a parabolic boundary
layer exists.

Different Scholars have considered different numerical schemes to find the nu-
merical solution of singularly perturbed parabolic problems. Such as, Using a
fitted numerical system, numerical solutions for singularly perturbed parabolic
reaction-diffusion problems are obtained [4, 7], numerical treatment for singu-
larly perturbed parabolic convection-diffusion problems using average fitted op-
erator finite difference technique Tesfaye et al, [2]; for singularly perturbed delay
parabolic differential equation Chakravarthy et al, [1] developed based on uni-
form mesh and adaptive mesh a stable finite difference scheme; a numerical treat-
ment for singularly perturbed delay parabolic partial differential equation using
a fitted operator finite difference technique with second order [3, 8] and Kadal-
bajoo and Awasthi [9] examined the approximate solution for time-dependent
singularly perturbed convection-diffusion equations exhibits a boundary layer on
the right side of the domain using the midpoint upwind method on non-uniform
mesh.

In this paper, a time delayed singularly perturbed parabolic partial differential
equations with boundary layer are considered using the idea of fitted operator
finite difference method. The fitted factor was derived by using the Crank-
Nicolson finite difference method. The result is compeered to the classical Crank-
Nicolson method and other method in the literature.
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2. Method Formulation

Consider singularly perturbed delay parabolic partial differential equations
(SPDPPDEs) in the form:−ϵ∂

2u(x, t)

∂x2
+ a(x)

∂u(x, t)

∂x
+
∂u(x, t)

∂t
= b(x)u(x, t− τ) + f(x, t),

(x, t) ∈ D ≡ (0, 1)× (0, T ].
(1)

with initial condition

u(x, t) = ψ(x, t), (x, t) ∈ [0, 1]× [−τ, 0] (1a)

and boundary condition

u(0, t) = S1(t) and u(1, t) = S2(t), (1b)

where 0 < ϵ ≪ 1 is the singular perturbed parameter, τ ≤ ϵ is the delay
parameter, a(x) ≥ β0 > 0 , b(x) ≥ β1 ≥ 0, f(x, t), ψ(x, t), S1(t) and S2(t) are
bounded and smooth functions. The initial condition u(x, t) = ψ(x, t) are also
satisfied the compatibility conditions.

ψ(0, 0) = S1(0) and ψ(1, 0) = S2(0) (2)
∂ψ(0, 0)

∂t
= ϵ

∂2ψ(0, 0)

∂x2
− a(0)

∂ψ(0, 0)

∂x
+ b(0)u(0,−τ) + f(0, 0)

∂ψ(1, 0)

∂t
= ϵ

∂2ψ(1, 0)

∂x2
− a(1)

∂ψ(1, 0)

∂x
+ b(1)u(1,−τ) + f(1, 0)

(3)

Using the assumption of equation (2) and (3) results problem (1) with the initial
condition (1a) and the boundary conditions (1b) has a unique solution.

Now, consider equation (1) on a particular domain (x, t) ∈ D = [0, 1] × [0, T ]
together with (1a) and (1b). Because of the the sign of a(x) and b(x) the
boundary layer of problem (1) occurs at x = 1. In order to apply fitted operator
finite difference technique to solve equation (1) together with (1a) and (1b) first,
approximate u(x, t− τ) using Taylor series expansion as follow.

u(x, t− τ) = u(x, t)− τ
∂u(x, t)

∂t
+O(τ2) (4)

Substituting equation (4) into equation (1), we have

−ϵ∂
2u(x, t)

∂x2
+ a(x)

∂u(x, t)

∂x
− b(x)u(x, t) + c(x)

∂u(x, t)

∂t
= f(x, t), (5)

where c(x) = 1 + τb(x).
The first procedure to apply finite difference technique is discretized the space
and the time interval in to M and N subintervals respectively.

xm = mh, h =
1

M
, m = 0, 1, 2, ...,M.

tn = nk, k =
T

N
, n = 0, 1, 2, ..., N.
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For simplicity, denote the approximate solution at (xm, tn) as u
n
m = u(xm, tn).

Applying the average of explicit and implicit finite difference method at (xm, tn)
and (xm, tn+1) points respectively (Cranck-Nicolson finite difference method) for
equation (5), we get.

−ϵ
2

(
un+1
m−1 − 2un+1

m + un+1
m+1

h2
+
unm−1 − 2unm + unm+1

h2

)
+

am
2

(
un+1
m+1 − un+1

m−1

2h
+
unm+1 − unm−1

2h

)
− bm

2

(
un+1
m + unm

)
+ T1

+
cm
2

(
un+1
m − unm

k
+
un+1
m − unm

k

)
+ T2 =

fn+1
m + fnm

2
,

where T1 = h2
(

ϵ
12

∂4un+1
m

∂x4
− an+1

m

6

∂4un+1
m

∂x4
+ ϵ

12

∂4unm
∂x4

− an
m

6

∂4unm
∂x4

)
.

T2 = −cm
k2

6

∂3unm
∂t3

Simplifying and rearranging the above equation, we have

2cmu
n+1
m − 2cmu

n
m

+k
(
− ϵ

un+1
m−1 − 2un+1

m + un+1
m+1

h2
+ am

un+1
m+1 − un+1

m−1

2h
− bmu

n+1
m

)
+k
(
− ϵ

unm−1 − 2unm + unm+1

h2
+ am

unm+1 − unm−1

2h
− bmu

n
m

)
+ T

= k
(
fn+1
m + fnm

)
,

(6)

where T = T1 + T2 is the total truncation error.
To obtain the more accurate numerical solution and ϵ- uniformly convergent
numerical method, multiply the perturbation parameter of equation (6) by fitting
factors σ1 and σ2.

2cmu
n+1
m − 2cmu

n
m

+k
(
− ϵσ1

un+1
m−1 − 2un+1

m + un+1
m+1

h2
+ am

un+1
m+1 − un+1

m−1

2h
− bmu

n+1
m

)
+k
(
− ϵσ2

unm−1 − 2unm + unm+1

h2
+ am

unm+1 − unm−1

2h
− bmu

n
m

)
= k

(
fn+1
m + fnm

)
(7)

The fitting factors σ1 and σ2 can be evaluated such that the solution of equation
(7) converges uniformly to the solution of equation (1). Using the theory of
perturbation O’Malley [14] multiplying both side by h and then evaluating the
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limit of equation (7) as h −→ 0 gives:
lim

h−→0

(
− σ1

ρ (un+1
m+1 − 2un+1

m + un+1
m−1) +

am

2 (un+1
m+1 − un+1

m−1)

)
+

lim
h−→0

(
− σ2

ρ (unm+1 − 2unm + unm−1) +
am

2 (unm+1 − unm−1)

)
= 0,

(8)

where ρ =
h

ϵ
.

Since, the finite difference approximation is evaluated at different time level,
from equation (8), it follows that:

lim
h−→0

(
− σ1

ρ (un+1
m+1 − 2un+1

m + un+1
m−1) +

am

2 (un+1
m+1 − un+1

m−1)

)
= 0

lim
h−→0

(
− σ2

ρ (unm+1 − 2unm + unm−1) +
am

2 (unm+1 − unm−1)

)
= 0

(9)

Simplifying equation (9), we get

2σ1
ρ

=
lim

h−→0
am(un+1

m+1 − un+1
m−1)

lim
h−→0

(un+1
m+1 − 2un+1

m + un+1
m−1)

, and (10)

2σ2
ρ

=
lim

h−→0
am(unm+1 − unm−1)

lim
h−→0

(unm+1 − 2unm + unm−1)
(11)

The solution of equation (5) based on matched asymptotic expansion method
O’Malley and Roos et al., [13, 14] is given as:
Let u0(x, t) is outer solution and to obtain the inner solution assume y = 1−x

ϵ
and U(y, t) = u(x, t).
Using chain rule, we have

∂u

∂x
=
∂U

∂y

dy

dx
= −1

ϵ

∂U

∂y

similarly

∂2u

∂x2
=

1

ϵ2
∂2U

∂y2

equation (5) becomes:

−1

ϵ

∂2U(y, t)

∂y2
−1

ϵ
a(1−ϵy)∂U(y, t)

∂y
−b(1−ϵy)U(y, t)+c(1−ϵy)∂U(y, t)

∂t
= f(1−ϵy, t).

Multiplying both sides by ϵ and taking ϵ = 0, we get

−∂
2U(y, t)

∂y2
− a(1)

∂U(y, t)

∂y
= 0
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The inner solution becomes:

uin(x, t) = c1 + c2e
−a(1) 1−x

ϵ , u(1, t) = S2(t))

Thus, the composite solution becomes:

u(x, t) = u0(x, t) +Ae−a(1) 1−x
ϵ (12)

Equation (12) at a point t = tn becomes:

un(x) = un0 (x) +Ae−a(1) 1−x
ϵ (13)

Since xm = mh, then the limit of equation (13) at xm becomes:

lim
h−→0

unm = un0 (0) +Ae−
a(1)
ϵ ea(1)mρ (14)

From equation (14), we have lim
h−→0

(
unm+1 − unm−1

)
= Ae−

an(1)
ϵ ea(1)mρ

(
ea(1)ρ − e−a(1)ρ

)
lim

h−→0

(
unm+1 − 2unm + unm−1

)
= Ae−

a(1)
ϵ ea(1)mρ

(
ea(1)ρ − 2 + e−a(1)ρ

) (15)

substituting equation (15) into equation (10) and (11) and simplifying , we get

σ1 =
ρan+1(1)

2
coth

[ρan+1(1)

2

]
(16)

and

σ2 =
ρan(1)

2
coth

[ρan(1)
2

]
(17)

After substituting the values of σ1 and σ2 in the scheme (7) and simplifying ,we
get the three term recurrence relation: system that can solved using Thomas
algorithm.

−En+1
m un+1

m−1 + Fn+1
m un+1

m −Gn+1
m un+1

m+1 = Hn+1
m (18)

for n = 0, 1, 2, ..., N and m = 1, 2, ...,M , where

En+1
m = k

(
ϵσ1
h2

+
am
2h

)
(18a)

Fn+1
m = 2cm + k

(
2ϵσ1
h2

− bm

)
(18b)

Gn+1
m = k

(
ϵσ1
h2

− am
2h

)
(18c)

Hn+1
m

= k

(
ϵσ2
h2

+
am
2h

)
unm−1 +

[
2cm − k

(
2ϵσ2
h2

− bm

)]
unm

+ k

(
ϵσ2
h2

− am
2h

)
unm+1 + k

(
fn+1
m + fnm

)
. (18d)
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Equation (18) is a tridiagonal system that can solved using Thomas algorithm.
Since cm and am are non-negative, then equation (18) becomes diagonally dom-
inant.

i.e. | Fn+1
m |>| En+1

m | + | Gn+1
m | .

Thus, the present method have convergent solution.

3. Convergence Analysis

To show the convergence of the method we show by using Lax’s equivalent
theorem.

3.1. Consistency of the method. The consistency of the original equation
(1) induced by the consistency of the transformed equation (5). From equation
(6) the total local truncation error of the present scheme at a point u(xm, tn) ,
we have

Tn
m = T1 + T2,

where T1 = h2
(

ϵ
12

∂4un+1
m

∂x4
− am

6

∂4un+1
m

∂x4
+ ϵ

12

∂4unm
∂x4

− am

6

∂4unm
∂x4

)
,

T2 = −cm
k2

3

∂3unm
∂t3

.

And, we have that lim
(h,k)−→(0,0)

Tn
m = 0.

Thus, the present method is consistent and the method has O(h2 + k2) order of
convergence.

3.2. Stability of the method. Using Von Neumann stability technique, we
have

unm = ξneimθ, (19)

where i =
√
−1, θ is real number and ξ is amplitude factor.

Substituting equation (19) into equation (18), gives

ξ(−En+1
m e−iθ + Fn+1

m −Gn+1
m eiθ)

= k

(
ϵσ2
h2

+
am
2h

)
e−iθ +

[
2cm − k

(
2ϵσ2
h2

− bm

)]
+ k

(
ϵσ2
h2

− am
2h

)
eiθ

Substituting the value of En+1
m , Fn+1

m and Gn+1
m into the above equation and

simplifying, we get

ξ =
2cm − 4k ϵσ2

h2 sin
2 θ

2
− iksinθ am

h + kbm

2cm + 4k ϵσ1

h2 sin2
θ

2
+ iksinθ am

h + kbm

.
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Let dm = 2cm + kbm, then the above equation becomes:

ξ ≤
dm − 4k ϵσ2

h2 sin
2 θ

2
− iksinθ am

h

dm + 4k ϵσ1

h2 sin2
θ

2
+ iksinθ am

h

.

For any mesh size in both x and t variables, we have |ξ| ≤ 1.
Thus, the present method is unconditionally stable.

From Lax’s equivalent theorem, a stable and consistent method is convergent
and hence the present method is convergent.

4. Examples and Solutions

To examine the performance of the present scheme, we considered model
problems which appear in literature and their approximate solutions are available
for comparison.
We considered the double mesh principle to compute the absolute maximum
error and the rate of convergence of the present method, if the exact solution
for the given problem is unknown.
To calculate the absolute maximum error at the specified mesh points, we used
the following formula:
Case 1:- If the exact solution is known

EM,N
ϵ = max

(xm,tn)∈D

∣∣∣u(xm, tn)− unm

∣∣∣
Case 2:- If the exact solution is unknown

Eϵ = max
(xm,tn)∈D

∣∣∣∣∣(unm)M,N

−
(
u2n−1
2m−1

)2M,2N
∣∣∣∣∣

In addition, in order to determine the corresponding rate of convergence we
evaluate using the formula:

RM,N
ϵ =

log(EM,N
ϵ )− log(E2M,2N

ϵ )

log(2)
.

Example 4.1. Consider the following time delayed convection-diffusion prob-
lem: 

−ϵ∂
2u

∂x2
+ (2− x2)

∂u

∂x
+ (x+ 1)(t+ 1)u(x, t) +

∂u

∂t
= u(x, t− τ) + 10t2exp(−t)x(1− x)

(x, t) ∈ [0, 1]× [0, 2]

subject to initial condition

u(x, t) = 0, (x, t) ∈ [0, 1]× [−τ, 0]
and boundary condition

u(0, t) = 0 and u(1, t) = 0, t ∈ (0, 2]
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The maximum absolute point-wise error and rate of convergence are shown in
Tables 1, 2 and 3 below for the present method and Crank-Nicolson method are
presented, together with different values of perturbation parameter ϵ and number
of subinterval of x and t. Figure 1 represent the computed solution’s physical
behavior. Figure 2 indicate the position of boundary layer using point-wise error
.

Table 1. Comparison of absolute maximum errors for τ = 0.8ϵ
for Example 4.1.

ϵ ↓ M,N −→ 32,32 64,64 128,128 256,256

Present method

2−4 3.3653e-04 8.4512e-05 2.1150e-05 5.2889e-06
2−6 9.6759e-04 2.5955e-04 6.6543e-05 1.6725e-05
2−8 2.9810e-03 1.2394e-03 3.7914e-04 1.0093e-04
2−10 3.0972e-03 1.7501e-03 8.8923e-04 3.5031e-04
2−12 3.0972e-03 1.7512e-03 9.2352e-04 4.7292e-04
2−14 3.0972e-03 1.7512e-03 9.2352e-04 4.7324e-04

CN-method

2−4 1.1099e-03 2.6934e-04 6.7037e-05 1.6741e-05
2−6 1.8031e-02 4.5114e-03 9.9789e-04 2.4262e-04
2−8 1.0872e-01 5.3821e-02 1.8443e-02 4.4862e-03
2−10 2.2302e-01 1.8085e-01 1.1657e-01 5.5492e-02
2−12 2.7671e-01 2.7184e-01 2.4278e-01 1.8875e-01
2−14 2.9290e-01 3.0466e-01 3.0200e-01 2.8467e-01

Table 2. Comparison of rate of convergence for τ = 0.8ϵ for
Example 4.1

ϵ ↓ M,N −→ 32,32 64,64 128,128

present method
2−4 1.9935 1.9985 1.9996
2−6 1.8984 1.9636 1.9922
2−8 1.2662 1.7088 1.9093
2−10 0.8236 0.9768 1.3439
2−12 0.8226 0.9232 0.9656
2−14 0.8226 0.9232 0.9646

CN- method
2−4 2.0429 2.0064 2.0015
2−6 1.9988 2.1766 2.0402
2−8 1.0143 1.5451 2.0395
2−10 0.3024 0.6336 1.0708
2−12 0.0256 0.1631 0.3632
2−14 -0.0568 0.0126 0.0853
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Figure 1. The behavior of the solutions for M=N=32, ϵ =
10−10 and τ = 0.8ϵ for Example 4.1

Figure 2. The pointwise absolute errors for M=N=32, ϵ =
10−10 and τ = 0.8ϵ for Example 4.1.
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Table 3. Comparison of absolute maximum errors for τ = 0.2ϵ
for Example 4.1 .

ϵ ↓ M,N −→ 32,32 64,64 128,128 256,256
present method

10−2 1.6745e-03 4.8597e-04 1.2709e-04 3.2143e-05
10−4 3.0972e-03 1.7512e-03 9.2352e-04 4.7324e-04
10−6 3.0972e-03 1.7512e-03 9.2352e-04 4.7324e-04
10−8 3.0972e-03 1.7512e-03 9.2352e-04 4.7324e-04

CN-Method
10−2 3.7099e-02 1.1472e-02 2.5449e-03 5.8998e-04
10−4 2.8937e-01 2.9715e-01 2.8781e-01 2.5948e-01
10−6 2.9840e-01 3.1689e-01 3.2698e-01 3.3180e-01
10−8 2.9849e-01 3.1709e-01 3.2744e-01 3.3288e-01

Example 4.2. Consider the one-dimensional singularly perturbed parabolic
partial differential equation with delay term [3].

−ϵ∂
2u(x, t)

∂x2
+ (2− x2)

∂u(x, t)

∂x
+ xu(x, t) +

∂u(x, t)

∂t
− u(x, t− τ)

= 10t2exp(−t)x(1− x),

(x, t) ∈ (0, 1)× (0, 2],

subject to initial condition u(x, t) = 0, (x, t) ∈ [0, 1]× [−τ, 0, ]
and boundery condition u(0, t) = u(1, t) = 0, t ∈ (0, 2],

(20)

In Table 4 comparison of absolute maximum point wise error and rate of
convergence using present method and CN- method are presented below . Figure
3(a) represent the computed solution’s physical behavior and Figure 3(b) to
indicates the position of boundary layer using different time level. Figure 4
indicate the physical behavior of the model using without fitting factor (uniform
mesh CN-method) and the oscillation indicates the unstableness of the method
or the method have a disturbance on the solution.
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Table 4. Comparison of absolute maximum errors and rate of
convergence for τ = 0.5ϵ for Example 4.2.

ϵ ↓ M,N −→ 64,32 128,64 256,128 512,256
present method

10−2 2.7417e-03 5.7576e-04 1.4326e-04 3.5509e-05
10−4 7.1656e-03 3.6211e-03 1.8200e-03 9.1225e-04
10−6 7.1657e-03 3.6212e-03 1.8200e-03 9.1234e-04
10−8 7.1657e-03 3.6212e-03 1.8200e-03 9.1234e-04
Rate 0.9847 0.9925 0.9963

CN-Method
10−2 4.1219e-02 8.9695e-03 2.1048e-03 5.2720e-04
10−4 1.1685e+00 1.0011e+00 8.8627e-01 7.0904e-01
10−6 1.4293e+00 1.4882e+00 1.4765e+00 1.3492e+00
10−8 1.4327e+00 1.5038e+00 1.5389e+00 1.5544e+00
Rate -0.0698 -0.0333 -0.0145

Figure 3. Numerical solution profile for present method (a)
and numerical results at different time (b) for Example 4.2 for
M=N=32, ϵ = 10−2 and τ = 0.5ϵ.
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Figure 4. Numerical solution profile without fitting factor for
Example 4.2 at M=N=80, ϵ = 10−4 and τ = 0.5ϵ

5. Results and Discussion

In this study we have discussed the approximate solution for a time delayed
singularly perturbed parabolic partial differential convection-diffusion problems
using fitted operator on Crank-Nicolson’s scheme. The basic mathematical pro-
cedures are defining the model problem, discretizing the solution domain uni-
formly, applying Crank-Nicolson’ method and introducing a fitting parameter
which is determined using theory of perturbation. Simplifying the developed
scheme, we get a diagonal dominant three-term recurrence relations at each
time level which is solved by using Thomas algorithm.

The model examples are used to exemplify the proposed method’s efficiency and
effectiveness. The current method is second order convergent with respect to
time and space variables and almost first order rate of convergence. The stabil-
ity and consistency have been established very well to guarantee the convergence
of the proposed method.

6. Conclusions

The numerical results, maximum point wise error, and rate of convergence
for the test problems are presented. The solution and error graphs are also
displayed. The findings show that the proposed method outperforms Crank-
Nicolson’s method as well as some earlier methods in the literature. Further
based on the result we can generalize that the proposed method is convergent
independent to the perturbation parameter.
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