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ABSTRACT

Self-Compensating Dynamic Balancer (SCDB) is composed of a circular disk with a groove
containing spherical balls and a low viscosity damping fluid. To investigate the stability of the motion
equations these equations are perturbed and the resulting perturbation equations are analyzed further
to determine whether the perturbations grow or decay with dimensionless time. Based on the results of
stability investigation, ball positions that result in a balanced system are stable above the critical speed
for B’=3.8. At critical speed the perturbed motion is said to be stable for B'=23. However, the system
is unstable below critical speed in any case of B'.
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1. Introduction

The unbalance in the rotors of rotating machinery
causes rotor vibrations and generates undesirable
forces. For simple rotors the correction procedure is
carried out by adding one or more balance weights to
the rotor at the correct angular orientation. How-
ever, in the case of long flexible rotors the correc-
tion procedure is more complicated. Instead of using
a dynamic balancing machine, the Self-
Compensating Dynamic Balancer (SCDB), or auto-
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matic dynamic balancer, has been proposed in many
patents to minimize the effects of rotor unbalance
and vibratory forces on the rotating system during
normal operation. The SCDB is usually composed of
a circular disk with a groove or race containing
spherical balls or cylindrical rollers and a low viscos-
ity damping fluid, although early attempts used
other approaches. The concept is applicable in many
fields such as space vehicle components, commercial
machines which have rotating shafts, automobile
wheels, etc. However, the investigators left it for
others to explain why this system will work. There-
fore, the objective of this research is to investigate
the dynamic stability of SCDB.
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2. Nondimensional Equations of Motion

A rotating shaft with SCDB carrying an unbalance
disk at its midspan is shown in Figure 1. The side
view of a general position of the rotating disk of
mass M and the balls, each of mass m, is shown in
Figure 2. The point C represents the deflected

centerline of the rotating system, and the point G
represents the location of the mass center of the disk
and SCDB. Assuming that the center C of the disk is
located at the origin O of the XYZ axes when the
shaft is aligned between the bearings, the lateral
deflection of the shaft at the location of the disk is
ocC.

The equations of motion of the system can be

rotating disk
and SCDB

gravity force direction

seif-aligning
bearing
Fig. 1 Rotating system of the SCDB
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Fig. 2 Self-compensating dynamic balancer
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derived by the Lagrangian method. For a circular
shaft it is logical to assume that the stiffness, £, and
the damping of the shaft, ¢, are the same regardless
of the orientation of the shaft. It is assumed that the
balls slide along the race because of drag force in
fluid. Therefore, a scalar Lagrangian function, L., is
FMIX+ Y —2e X sin¥ + & U
+2e¥Ycos¥)

+lé<mi+%mi>{f(2+ Y2+ (¢i+ QII')ZRZ
—2R (d:s+ W) [ Xsin(p:+ ¥)

~Yeos(g+ DN -3k XC+Y) (D)

L=%121172+

where, gravitational effects have been ignored. /; is
mass moment of inertia of the disk. If the angular
velocity of the disk is constant, then ¥=0, ¥=gu
and ¥'=wt where, o is a rotation speed of the shaft.
In this case equations of motion are obtained by
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_%wwn)cos“"”_ TS disin (414 )
+ (it w)cos (¢ +wt) =0, (2)
{H”(%)] w§R+%%+ 5
_%<(z)">zsin(a)t) + wlz—l(/[’ié[mosw t o)
— (i +w)?sin(p:+ wt (3)
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where,
2
mi+ M
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—=——=—and =
M M (WL;“F%WL;‘)RZ

(for i=1, 2, -, n). (5)

D is drag force per unit angular velocity and # is
number of the balls. The natural circular frequency
of the rotating system, w,, and the damping factor,

¢, are given by w.=, /ﬁki and ¢= ) J%]W' respective-

ly. To get nondimensional equations of motion,
introduce

t=w,'t, X=Rx,and Y=Ry, (6)
where X, Y, and t are dimensional displacements
and time and %, ¥, and ¥, are nondimensional
displacements and time, respectively. Substituting
Eq. (6) into the Egs. (2), (3), and (4) then gives

[1+ n(%)f +2§9?+ x —%((%)%os(i% f>

— 5 isin( $+-2 7 )+( i+ ) cos
(ot

m\| = -~ ef wN. [ w
14 W)]y”@y”“ﬁ(a) S‘“( o)

i=1 Wn
po+-21)| -0, (8)
¢,—5c"sin(¢,-+z)w: f>+ fzcos<¢ )
+<¢,+ a?ﬂ)[xcos(d) +—f)+ ysin
(6+-27)]=-8, (©)
where
g=L= 2 10)

Wn <m,v+-§~m,->l?2a)n
3. Steady Solution

We will seek solutions where X and Y are zero
and the balls have reached an equilibrium position.
This is clearly the desired operating condition for
the SCDB. When the balls are located at the equilib-
rium position, then

X=X=X=0, Y=Y=Y=0
and  ¢,=¢:=0. (11)
In this case Eqgs. (2) and (3) can be expressed as
ﬁcos(wt) +%_§Z}l[cos¢ncos(a)t)
—sing.sin(wt) ]=0 (12)
Rsm((ut) + 5z M2 Z[smgb cos(wt)
+cos¢.sin (wt) | =0, (13)

respectively. Multiplying (12) by cos{(w?) and (13) by
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sin(wt), then adding the resulting equations, gives
n
%+ﬁ2ws¢i=0. (14)
i=1

Multiplying (12) by sin(w¢) and (13) by cos(wt), then
subtracting the resulting equations gives

g::sims,-:o. (15)

Equations (14) and (15) must both be satisfied for the
rotating system to be in a state of balance. Accord-
ing to the Eqs. (14) and (15), a rotating system is said
to be in a state of balance when the resultant of all
centrifugal forces acting on the rotating system is
zero and the centrifugal forces do not give rise to
any couple acting on the rotating system.

4. Perturbation Equations

To investigate the stability of the motion equa-
tions, these equations are first perturbed and the
resulting equations are analyzed further to deter-
mine whether the perturbations grow or decay with
time. According to this techniques, the solution is
represented by the first few terms of an asymptotic
expansion, usually not more than two terms. Sup-
pose that the balls have some slight displacements
from dynamic equilibrium positions, ¢ which are
constants. Let

pi=duted,+ 0, (for i=1, 2, =, n)

(16)
T=ZXotexi1+0(&Y, (17)
J=Vot+teyi+0(&), (18)

We seek approximate solutions which are uniformly
valid for small . To simplify the Egs. (7), (8), and (9),
let

w_ - E_ 53 m_
-~ =B, R—R, andM 1. (19)

Wn

Substituting Eqs. (16), (17), (18), and (19) into the Eqs.
(7), (8), and (9) then the nondimensional equations of
motion are obtained as

L+ nm) (ot ex1) +28 (Kot &%)
+ (Fot+ex) — Rdtcos(GT)

—mignl{eéi[sin(miﬂﬁ)
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+cos($si+ @F) epi]
+Ha*+e@ad:+edH]cos(psi+ G T)
—egsin{dsi+ @ 7)1+ 0 (%) =0, (20)
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+(9o+ed)— Rasin(GT)
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edi— (%ot ex1)[sin(si+ & T) +cos(Ps

+G ) edi]+ (Jot+ey)[cos(gsi+ @ T)
—epssin{ps+ @) ]

+(edi+ @) {Fot+ X)) [cos(Psit+ G ) —edi
sin(gsi+ @)1+ (Jo+e5) [sin(po+ @ T)
+cos(put @) ed ]} +0(D)=—PBed, (22)

Equating the coefficients of power of & and using
the Eqs. (14) and (15) then gives
(1+ na#) Ko+ 28 %o+ Zo=Ra*cos (G T)

n
+M§1@2COS(¢31+(Z F)

= (R+ TthOS¢sz‘)COS(C§ r)— mgsin

b sin(aF)]=0, (23)
(1+ n9#) Fo+2E50+ Jo=Ra*sin(G F)

+ méa’)zsin(rﬁsmL 1)

-~ n n
=@ [ (R+ nﬁZlcosgz‘)s,-) sin(@f)+ rhzisin
$si cos(@F)]=0, (24)
These equations are transient oscillations that decay
with time. If the shaft is initially disturbed, # and 7
are not zero but become zero as the oscillations

decay. Equating coefficients of like power of &
yields

(L4 ) #1425+ 1= (Bisin(gut @ )
~ @ pisin(si+ G ) +20dcos(pei+ @ F)

(25)
(1+nrh)§1+2§§1+}71=—7ﬁg{$i cos (¢s:
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+a7T)

(26)
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+é:Fosin(ps+@T) — @Fod: sin(Pst & F)
+ @%1cos(Psi+ G T) + @ Vopicos(dsi+ @ F)
+@ysin(gat+dt)=—p5é..

27

5. Dynamic Stability

The perturbed equations, (25), (26), and (27) do not
appear to be able to be integratable in closed form.
Therefore, to investigate the stability of the pertur-
bed equations it is convenient to utilize the fact that
a system of n second order equations can be trans-
formed into a system of 2n first order equations. Let
us introduce six state variables,

{mmemsnansne)'={%1, %, F1, 1, ¢, $1)7 and
{77‘277'477.6}T:{;151$1}T. (28)

For convenience, consider only the one ball case.
Therefore, using the state-space method, the pertur-
bed equations, (25), (26), and (27), can be expressed by

{19203 747596} =[ACT) Ummnsninsne)®
(29)

where, the system matrix, [A(7)], is defined as

0 1.0 0 0 O
Az Az Ass Azi Ass Az

1o 001 0 0
LACOI=| 44 Aw A Au As As (30)

0 0 0 0 0 1
AGI A62 A63 A64 AGS Aﬁﬁ
and the elements of the system matrix, [A(7)], are
expressed by

An=— (1+m)[1+msin®*(¢a+ G F)]/ (1+m)?,
(31)

Ap=[—-20Q+m) —25(1+m)sin®* (¢ + G F)
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Ay=—(1+m) misin(ps;+ @ T ) cos (pa

+a7)/ (1+m)?, (36)
Ap=[m(1+ %) dcosy ¢+ @ F) + m* (1+ m)
wcos® (@a+ @ )

—2m(1+m) tsin(psi+ @ T Ycos(psi+ G E) ]/

(1+7)2, (37)
As=—Q+m)[1—ricos* (gpa+ G F) ]/ (1+m)?,
(38)

Ay=[-200+m) +2om 1+ %) cos 2 (pa+ G T)
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(1+m)?, (39
A s=[m(1+m) &* cos[@si+ @ F) —m2(1+ ) &°
cos(pai+a )]/ (1+m)% (40)

Ap=[—2m(1+m) & sin(ga+@&T) —m(1+m)?
sin(¢si+ @ F)cos(ps+ad )
— B (1+ ) *cos(ga+ G F)]/ (1 + )3, (41)

Ag=—sin(ga+a ), (42)
Ap=(1+m) @cos(Pps+ @ F) —2&sin(ga+d ),

(43)
As=cos(pa+ad F), (44)
Ag=—1+m)osin(gsi+dF)+2& cos (s
+at), (45)
Ag=—md?, _ (46)
A=~ (1+m)[B +sin(psi+ & F)]. 47

However, in Eq. (27), %o, ¥0, %o, and , are dropped
because these are transient oscillations that dis-
appear with time.

The Floquet theory has been developed for char-
acterizing the functional behavior of linear ordinary
differential equations with periodic coefficients. In
equation (30), [A(¥)] is an 6 by 6 matrix such that
[A(F +T)]=[A(F)] where T is period of the sys-
tem matrix, [A(7)]. To determine the eigenvalues
and hence the characteristic exponents of (29), one
can numerically calculate a fundamental set of solu-
tions [U]. [U] satisfies the matrix equation (29) of
[U]=[A(F)][U] using the initial conditions [ U(0)]
=[7] during a period of oscillation. Then [U(T)],
nonsingular constant 6 by 6 matrix, is obtained as

[UU)=[1+4t{ AU )],
(U@A=[U )]+ At[A (41U (4],
[U@Ban]=lU@an 1+ at[A@an][U
(24t)],
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(48)
[U(T)]=(U(T—4) 1+ 4t [A(T —4t)][U
(T —4t)]

Solving the characteristic equation, |[U(T)]— g[/]]
=(), yields a set of characteristic multipliers, 7. e. the
characteristic roots, g’s, of the matrix [U(T)]. To
investigate dynamic stability of the Eq. (29), numeri-
cal simulation was carried out using the Floquet
algorithm. Figures 3 to 8 show the results of com-
puter simulation of the Floguet algorithm when @ is
1.5 (above critical speed), 1.0 (at critical speed), and
0.7 (below critical speed) with only one ball. The
input data were chosen as #=0.005, £=0.01, and ¢
= 7. Figure 3 is a plot of the characteristic multi-
pliers, ¢'s, in complex plane above critical speed (@
=1.5). From this figure the moduli, ;. e., absolute
values, of the characteristic multipliers are found to
be a set of {0.9765, 0.9765, 0.9562, 0.9562, 0.9833, 0.
9833} and all of the moduli are less than 1, 7.e., all of
the moduli are inside of the unit circle. Therefore,
the perturbed motion is said to be stable above
critical speed when B'=0.01. Figure 4 is a plot of the
characteristic multipliers in complex plane at criti-
cal speed (@=1.0) when 3'=0.01. From this figure
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Fig. 3 Characteristic multipliers(g=1.5 and B'=0.01
case) (Characteristic multipliers: -0.4129 +0.8925
7, 0.7617+0.61167, and -0.4925+0.8197;)
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Modulus of Characteristic Multiplier

the moduli of the characteristic multipliers are
found to be a set of {1.302, 1.302, 0.717, 0.717, 0.9238,
0.9508} and two of the moduli (#1 and #2) are greater
than 1, 7.e., #1 and #2 are outside of the unit circle.
Therefore, when 3'=0.01 the perturbed motion is
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Fig. 4 Characteristic multipliers(é=1.0 and B’'=0.01
case) (Characteristic multipliers: 1.2712+0.2814
7, 0.7028+0.1435¢, 0.9238, and 0.9508)
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Fig. 5 Modulus of characteristic multiplier versus B'(&

=1.0 case)
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Fig. 6 Characteristic multipliers(¢=0.7 and B'=(.01
case) (Characteristic multipliers: 1.7514, 0.5059,
—0.8181+0.40607, and —0.8517 £0.44467)
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Fig. 7 Modulus of characteristic multiplier versus B'(@
=0.9 case)

unstable at critical speed. Figure 5 is a plot of one of
the moduli of the characteristic multipliers versus B’
at critical speed (@ =1.0). However, From this figure
increased B’ can yield a stable system at critical
speed. Figure 6 is a plot of the characteristic multi-
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Fig. 8 Dynamic stability diagram(& versus B')

pliers in complex plane below critical speed (&<1)
when B'=0.01. From this figure the moduli of the
characteristic multipliers are given by the set {I.
7514, 0.5059, 0.9133, 0.9133, 0.9607, 0.9607} and one of
the moduli (#1) is greater than 1, i.e., #1 is outside of
the unit circle and the system is unstable. Figure 7 is
a plot of one of the characteristic multipliers versus
B below critical speed (#=0.9). From this figure
increased 3’ does not appear to be able to make the
system stable below critical speed. Therefore, the
perturbed motion appears to be unstable below criti-
cal speed. Figure 8 shows a dynamic stability dia-
gram of the perturbed motion (B’ versus ). From
this diagram the damping coefficient, §’, of the fluid

plays an important role in the stability of the pertur-
bed motion.

6. Conclusions

Many inventors have suggested various kinds of
Self-Compensating Dynamic Balancer through U.S.
patents, but they left it for others to explain why this
system will work or will not work with solid balls
and damping fluid which has a low viscosity. To the
author’s knowledge, the motion analysis of the balls
and the rotating shaft as presented in this paper
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represents the first attempt to analyze the dynamic
stability of an SCDB with solid balls and damping
fluid.

From the preceding work, the following conclu-
sions were drawn. The equations of motion of the
balls were derived by the Lagrangian method.
Steady solutions were derived from the analytic
model. Perturbation solutions were also obtained
from the analytic model. To investigate dynamic
stability of the perturbed motion numerical simula-
tion of the Floquet algorithm with only one ball was
conducted. Based on the results of stability investi-
gation, ball positions that result in a balanced sys-
tem are stable above the critical speed for 3'=3.8.
At critical speed the perturbed motion is said to be
stable for B’=23. However, the system appears to be
unstable below critical speed. However, further
study of this Self-Compensating Dynamic Balancer
for a nonuniform rotating system with variable
rotating speed and the effect of B’ on dynamic stabil-
ity for multiple balls should be done in the future.
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