• 제목/요약/키워드: person recognition

검색결과 599건 처리시간 0.026초

Generic Training Set based Multimanifold Discriminant Learning for Single Sample Face Recognition

  • Dong, Xiwei;Wu, Fei;Jing, Xiao-Yuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권1호
    • /
    • pp.368-391
    • /
    • 2018
  • Face recognition (FR) with a single sample per person (SSPP) is common in real-world face recognition applications. In this scenario, it is hard to predict intra-class variations of query samples by gallery samples due to the lack of sufficient training samples. Inspired by the fact that similar faces have similar intra-class variations, we propose a virtual sample generating algorithm called k nearest neighbors based virtual sample generating (kNNVSG) to enrich intra-class variation information for training samples. Furthermore, in order to use the intra-class variation information of the virtual samples generated by kNNVSG algorithm, we propose image set based multimanifold discriminant learning (ISMMDL) algorithm. For ISMMDL algorithm, it learns a projection matrix for each manifold modeled by the local patches of the images of each class, which aims to minimize the margins of intra-manifold and maximize the margins of inter-manifold simultaneously in low-dimensional feature space. Finally, by comprehensively using kNNVSG and ISMMDL algorithms, we propose k nearest neighbor virtual image set based multimanifold discriminant learning (kNNMMDL) approach for single sample face recognition (SSFR) tasks. Experimental results on AR, Multi-PIE and LFW face datasets demonstrate that our approach has promising abilities for SSFR with expression, illumination and disguise variations.

얼굴 인식 성능 향상을 위한 재분류 방법 (Re-classifying Method for Face Recognition)

  • 배경률
    • 지능정보연구
    • /
    • 제10권3호
    • /
    • pp.105-114
    • /
    • 2004
  • 최근 생체인식에 대한 관심이 증가하면서 출입 통제나 사용자 인증과 같은 보안 분야에 적용이 활발히 진행되고 있다. 특히 얼굴인식은 생체인식 기술 중 사용자 편의성과 접촉 거부감이 적어 활용성이 증대되고 있으나 타 인식기술에 비해 인식 결과의 정확성과 재시도율(Re-attempt Rate)에 취약한 단점이 있다. 본 논문에서는 이러한 단점을 보완하기 위해 데이터 분류 방법(Data Classification Algorithm)으로 인식 결과를 재분류(Re-Classification)하는 접근법에 대해서 제안하고자 한다. 본 실험을 위해서 대표적인 형상 기반(Appearance-based) 알고리즘인 PCA를 사용하였고, 200명(총 얼굴 영상 200장)을 대상으로 제안한 재분류 접근법을 적용한 결과 재인식의 경우 성능이 향상되었음을 확인하였다.

  • PDF

Micro-Expression Recognition Base on Optical Flow Features and Improved MobileNetV2

  • Xu, Wei;Zheng, Hao;Yang, Zhongxue;Yang, Yingjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권6호
    • /
    • pp.1981-1995
    • /
    • 2021
  • When a person tries to conceal emotions, real emotions will manifest themselves in the form of micro-expressions. Research on facial micro-expression recognition is still extremely challenging in the field of pattern recognition. This is because it is difficult to implement the best feature extraction method to cope with micro-expressions with small changes and short duration. Most methods are based on hand-crafted features to extract subtle facial movements. In this study, we introduce a method that incorporates optical flow and deep learning. First, we take out the onset frame and the apex frame from each video sequence. Then, the motion features between these two frames are extracted using the optical flow method. Finally, the features are inputted into an improved MobileNetV2 model, where SVM is applied to classify expressions. In order to evaluate the effectiveness of the method, we conduct experiments on the public spontaneous micro-expression database CASME II. Under the condition of applying the leave-one-subject-out cross-validation method, the recognition accuracy rate reaches 53.01%, and the F-score reaches 0.5231. The results show that the proposed method can significantly improve the micro-expression recognition performance.

소프트웨어 영재상 정립을 위한 초등교사의 인식 조사 (Elementary School Teacher's Recognition on Establishing the Concept of Software Gifted Persons)

  • 이재호;장준형;신현경
    • 영재교육연구
    • /
    • 제27권1호
    • /
    • pp.97-118
    • /
    • 2017
  • 본 연구는 소프트웨어(SW) 중심사회의 도래에 따른 SW영재교육에 대한 관심이 고조되고 있는 가운데 SW영재교육의 목표와 방향성 설정을 위한 기초자료를 제공하기 위한 목적으로 진행되었다. 이와 같은 목적을 달성하기 위하여 다음과 같은 단계의 연구를 진행하였다. 첫 번째, SW영재상 정립을 위한 기반 모델로 'ICT기반 창의인재상 모델'을 선정하였다. 본 연구에서 선정한 기반모델은 'ICT기반의 창의인재상'으로 '지식기술역량', '통합창의역량', '인성역량' 등을 3대 핵심역량으로 정의하였다. 두 번째, SW영재상에 대한 인식을 조사할 수 있는 검사도구를 개발하였다. 본 연구에서 의견조사 참여자들에게 조사할 검사도구의 구성은 '컴퓨팅 사고력', '기업가 정신', '사회적 기여' 등의 특성요인으로 구성하였고, 각 특성요인별로 7개씩의 특성요소로 구성하였다. 세 번째, 의견조사 참여자를 초등교사로 선정한 후 이들을 대상으로 의견조사를 실시하였다. 네 번째, 의견조사 내용에 대한 분석을 실시하였다. 분석결과 의견조사 참여자들은 연구진이 제안한 3가지 인재특성요인 중 '컴퓨팅 사고력'에 가장 높은 동의수준을 보인 것으로 조사되었다. 또한, SW교육과 영재교육 경험 유무에 따른 집단 간 동의수준 비교 측면에서 유의미한 차이를 보인 특성요소들의 경우 경험이 있는 집단의 동의수준이 경험이 없는 집단의 동의수준보다 높게 조사되었다.

호모그래피와 주성분 분석을 이용한 실루엣 기반 걸음걸이 인식 (Silhouette-based Gait Recognition Using Homography and PCA)

  • 정승도;김수선;조태경;최병욱;조정원
    • 한국콘텐츠학회논문지
    • /
    • 제6권1호
    • /
    • pp.31-40
    • /
    • 2006
  • 본 논문에서는 걸음걸이 실루엣 영상을 이용한 걸음걸이 인식 방법을 제안한다. 걸음걸이 특징 정보는 걸음걸이의 방향 변화에 많은 영향을 받는다. 따라서 본 논문에서는 평면 호모그래피를 이용하여 실루엣을 고유시점으로 재구성함으로써 방향변화의 영향을 줄이고자 한다. 이때, 평면 호모그래피는 카메라 보정과 같은 복잡한 계산과정 없이 걸음걸이 시퀀스 정보만을 이용하여 추정된다. 동일인의 걸음걸이 실루엣이라 하더라도 배경 제거시의 에러 등으로 인해 공통적인 특성에서 벗어나는 영역이 존재한다. 각 개인의 동일 특성에서 벗어나는 특성을 분석하기 위하여, 본 논문에서는 주성분 분석 기법을 사용한다. 그러나 일반적인 패턴 분류에 적용되는 주성분 분석 기법과는 달리 본 논문에서는 공통적인 특성에서 벗어나는 정도의 판단과 그에 따르는 가중치 부여 기준으로써 사용한다. 실험결과 제안하는 걸음걸이 인식 기법은 걸음걸이 방향 변화에 강인하고, 분별력을 향상시킬 수 있음을 확인하였다.

  • PDF

키넥트의 모션 인식 기능을 이용한 수화번역 시스템 개발 (Development of Sign Language Translation System using Motion Recognition of Kinect)

  • 이현석;김승필;정완영
    • 융합신호처리학회논문지
    • /
    • 제14권4호
    • /
    • pp.235-242
    • /
    • 2013
  • 청각, 언어장애인과 수화를 모르는 일반인과의 대화를 위해, 키넥트를 이용한 모션 인식을 통해 수화를 번역하여 주는 시스템을 개발하였다. 키넥트의 주요기능을 이용하여 수화를 번역하는 알고리즘들을 설계하고, 다양한 수화자에 대한 수화번역의 정확도를 높이기 위한 방법으로서 길이정규화와 팔꿈치정규화의 두 가지 정규화 방법을 사용하였다. 그리고 이러한 정규화 방법이 효과적인지 알아보기 위해서 실제 수화데이터를 차트로 비교하였다. 또한 10개의 데이터베이스를 입력하여 간단한 수화부터 복잡한 수화까지 직접 실시하고, 이를 키넥트로 인식하여 번역을 해봄으로서 프로그램의 정확도를 검증하였다. 추가적으로 다양한 체형의 수화자를 인식시켜 프로그램을 실행 시켜봄으로서 체형에 따른 오차 값의 보완을 완료하여 수화번역에 대한 신뢰도를 높였다.

웨어러블 환경에서의 수족사용 불능자를 위한 홈오토메이션 사용자 인터페이스 (User interface of Home-Automation for the physically handicapped Person in wearable computing environment)

  • 강선경;김영운;한대경;정성태
    • 한국컴퓨터정보학회논문지
    • /
    • 제13권5호
    • /
    • pp.187-193
    • /
    • 2008
  • 웨어러블 환경에서 사용자가 홈오토메이션 시스템을 제어할 수 있는 인터페이스기술들이 최근 많이 개발되고 있다. 본 논문에서는 수족이 불편한 사용자가 웨어러블 환경에서 EOG 감지 회로와 사람이 인지 가능한 마커를 이용하여 홈오토메이션을 직접 제어할 수 있는 인터페이스 방법을 제안한다. 제안된 사용자 인터페이스에서는 지시 장치로 EOG 감지 회로를 사용하고, 사용자가 다루고자 하는 홈오토메이션 기기에 해당되는 마커를 눈의 움직임을 이용해 사용자가 선택하면 선택된 마커를 인식하여 해당 기능을 수행하는 제어 명령을 홈오토메이션 제어장비에 보냄으로써 사용자가 원하는 기능이 수행되도록 한다. EOG 감지 회로와 마커 인식 시스템을 이용함으로써 수족 사용이 불가능한 사용자도 눈동자의 움직임만으로 홈오토메이션 조작을 손쉽게 수행할 수 있다.

  • PDF

Caffe를 이용한 얼굴 인식 파이프라인 모델 구현 (Implementation of Face Recognition Pipeline Model using Caffe)

  • 박진환;김창복
    • 한국항행학회논문지
    • /
    • 제24권5호
    • /
    • pp.430-437
    • /
    • 2020
  • 제안 모델은 얼굴 검출과 랜드마크 및 얼굴 인식 알고리즘을 이용하여 인공신경망으로 학습을 통해 얼굴 예측률과 인식률을 향상하는 모델을 구현하였다. 제안 모델은 특정 인물의 얼굴 영상에서 랜드마킹을 한 후, 기존에 학습된 Caffe 모델을 이용하여 얼굴검출과 임베딩 벡터 128D를 추출하였다. 학습은 기계학습 알고리즘인 SVM (support vector machine)과 DNN (deep neural network)을 구축하여 학습하였다. 얼굴인식은 학습된 모델을 이용하여 학습된 인물 중 다른 얼굴 영상으로 테스트하였다. 실험 결과, SVM 보다는 DNN으로 학습한 결과가 우수한 예측률과 인식률을 보였다. DNN의 중간층을 증가하게 되면 예측률은 높아지나 인식률이 감소하는 현상이 발생하였다. 이것은 인식하고자 하는 대상이 적음으로써 발생하는 과적합으로 판단된다. 제안 모델은 명확한 얼굴 영상을 추가하여 학습한 결과, 높은 예측률과 인식률의 결과를 얻을 수 있음을 확인할 수 있었다. 본 연구는 좀 더 많은 얼굴 영상 데이터를 이용함으로써 보다 효과적인 딥러닝 구축을 통해 보다 향상된 인식률과 예측률을 얻을 수 있을 것이다.

이미지 색상, 명도, 채도 감성컴퓨팅의 유사성 검증 연구 (Image Color, Brightness, Saturation Similarity Validation Study of Emotion Computing)

  • 이연란
    • 만화애니메이션 연구
    • /
    • 통권40호
    • /
    • pp.477-496
    • /
    • 2015
  • 사람의 이미지 감성인식은 각기 다른 성향으로 표현된다. 현재는 감성인식을 객관적으로 평가하려는 감성컴퓨팅 연구가 활발하게 연구되고 있다. 그렇지만 기존의 감성컴퓨팅 연구는 실행에 많은 문제점을 갖고 있다. 첫째, 감성인식 면에서 비객관적이고, 부정확하다. 둘째, 감성인식의 상관관계가 불명확한 점이다. 그리하여 본 연구의 필요성으로 이미지 감성의 규칙성을 실험하여 감성컴퓨팅 방식으로 제어하고자 한다. 또한 본 연구의 목적으로 감성인식을 숫자화하고, 객관화하는 이미지 감성컴퓨팅 시스템 방식을 적용하고, 사람의 감성과의 유사 정도를 비교한다. 이미지 감성컴퓨팅 시스템의 주요 특징은 감성인식을 숫자화 된 디지털 형식으로 계산한다. 그리고 감성컴퓨팅의 연구배경은 감성을 디지털화하는 James A. Russell의 핵심 효과(Core Affect)를 활용한다. 핵심 감성으로 쾌정도(X축)인 쾌와 불쾌, 긴장도(Y축)인 긴장과 이완의 감성축이고, 감성컴퓨팅 연구에 적용한다. 감성축은 연관된 대표감성으로 아주 기쁜, 흥분, 의기양양, 행복한, 자족, 고요한, 여유로운, 조용한, 피곤한, 무기력한, 우울한, 슬픈, 화가 난, 스트레스, 불안, 긴장된 감성의 16개로 구분하여 감성컴퓨팅에 적용한다. 본 연구의 과정은 이미지 감성컴퓨팅 계산식의 핵심인 색채 요소를 활용하여 색상, 명도, 채도를 감성속성요소로 적용한다. 감성속성요소는 중요도인 가중치를 적용하여 비율을 계산하고, 쾌정도(X축)와 긴장도(Y축)의 감성점수로 측정한다. 다시 교차된 감성점을 바탕으로 감성원으로 확장하고, 포함된 대표감성크기로 상위 5위인 주요대표감성으로 선별한다. 또한 사람의 이미지 감성을 16개 대표감성점수로 측정하고, 상위 5위의 대표감성으로 구분한다. 연구결과 감성컴퓨팅의 주요대표감성과 사람의 감성인식의 주요대표 감성을 비교하여 일치하는 대표감성수에 따라 감성의 유사 정도를 검증한다. 감성컴퓨팅 유사성 실험 결과 주요대표감성의 평균 일치율은 51%이고, 2.5개의 대표감성이 사람의 감성인식과 일치했다. 본 연구를 통해 감성컴퓨팅 계산 방식과 사람 감성인식의 유사 정도를 측정했고, 감성계산식의 객관적인 평가기준을 제시했다. 향후 연구에서는 좀 더 높은 일치율 향상의 방안과 감성계산식의 가중치 연구가 유지되어야 할 것이다.

유닛 재구성 방법을 이용한 PDA용 온라인 필기체 한자 인식 (On-line Handwriting Chinese Character Recognition for PDA Using a Unit Reconstruction Method)

  • 진원;김기두
    • 대한전자공학회논문지SP
    • /
    • 제39권1호
    • /
    • pp.97-107
    • /
    • 2002
  • 본 논문에서는 PDA용 온라인 필기체 한자 인식기를 구현하였다. PDA는 PC보다 느린 CPU와 적은 메모리를 사용하기 때문에, 본 논문에서는 적은 연산량과 적은 메모리를 사용하면서 높은 인식률을 갖는 인식기를 개발하는데 초점을 맞추었다. 따라서, 빠른 인식을 위하여 적은 연산 과정을 갖는 인덱스 매칭 방법을 사용하였고, 필기 한자의 획순 변동과 획수 변형을 수용함과 동시에, 문자 모델의 저장을 위한 메모리를 최소화하기 위하여 유닛 재구성 방법을 제안하였다. 사전에 정의된 유닛을 사용하여 1800개의.표준 문자 모델을 설정하였다. 입력된 데이터는 전처리 및 특징 추출 과정을 거친 후 표준 문자 모델과의 획수 및 형태적 특징을 기준으로 선정된 후보 문자들과의 유사도를 측정한다. 실험 대상 문자는 중·고등학교 표준 기초 한자 1800자를 대상으로 하였으며, 획수와 획순에 구애받지 않고 정서체로 필기한 5인의 문자 셀을 사용하였다. 실험은 문자 당 평균 인식 속도와 인식률을 측정하였으며, 이 결과 문자 셀에 대한 평균 인식률 94.3%를 얻었다. 문자 당 평균 인식 속도는 MIPS R4000 CPU를 사용한 PDA에서 0.16 초의 결과를 내었다.