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Abstract 
 

Face recognition (FR) with a single sample per person (SSPP) is common in real-world face 
recognition applications. In this scenario, it is hard to predict intra-class variations of query 
samples by gallery samples due to the lack of sufficient training samples. Inspired by the fact 
that similar faces have similar intra-class variations, we propose a virtual sample generating 
algorithm called k nearest neighbors based virtual sample generating (kNNVSG) to enrich 
intra-class variation information for training samples. Furthermore, in order to use the 
intra-class variation information of the virtual samples generated by kNNVSG algorithm, we 
propose image set based multimanifold discriminant learning (ISMMDL) algorithm. For 
ISMMDL algorithm, it learns a projection matrix for each manifold modeled by the local 
patches of the images of each class, which aims to minimize the margins of intra-manifold and 
maximize the margins of inter-manifold simultaneously in low-dimensional feature space. 
Finally, by comprehensively using kNNVSG and ISMMDL algorithms, we propose k nearest 
neighbor virtual image set based multimanifold discriminant learning (kNNMMDL) approach 
for single sample face recognition (SSFR) tasks. Experimental results on AR, Multi-PIE and 
LFW face datasets demonstrate that our approach has promising abilities for SSFR with 
expression, illumination and disguise variations. 
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1. Introduction 

Face recognition (FR) has been attracting significant attention in many computer vision 
applications [1], and many researchers have proposed a number of methods to address various 
problems emerging in practical face recognition scenarios, such as face 
identification/verification in unconstrained or less constrained environment [2-5]. As a result, 
machine vision can surpass human vision when sufficient and representative training samples 
are supplied to those methods [6]. In fact, collecting plenty of samples means heavy workload, 
huge storage and processing expense. And unfortunately, in many real-world FR applications 
(e.g., law enforcement, e-passport, driver license, etc.), we can obtain only a single sample per 
person (SSPP). We call face recognition in this scenario as single sample face recognition 
(SSFR). If only a single sample per person is available, most current face recognition 
techniques would suffer degraded performance or fail to work due to lack of sufficient samples. 
For example, traditional discriminative subspace learning based face recognition methods may 
fail to work, because the intra-class variations cannot be well estimated in SSPP scenario [7]. 
Aiming to efficiently perform FR tasks with only a single sample per person, a number of 
SSFR methods were proposed [8-14]. When the single sample image of each person is divided 
into several local patches, face recognition tasks can be conducted by employing probabilistic 
model, discriminative multimanifold analysis, collaborative representation based classifier 
and linear discriminant analysis (LDA) [15-19]. However, the single training sample of each 
person usually just contains partial intra-class facial variations. If the intra-class variations 
(e.g., illumination, expression and disguise) of query sample images do not exist in the single 
training sample of each person, the performance of SSFR would be affected significantly. 

In this paper, we propose an algorithm to tackle the problem of intra-class variations 
lackness in SSPP scenario. And then we propose a SSFR approach to efficiently perform 
SSFR tasks. The contributions of this paper are summarized as following three points:  

(1) We propose a virtual sample generating algorithm called k nearest neighbors based 
virtual sample generating (kNNVSG) to enrich intra-class variation information, which may 
do not exist in the only single training sample of each person, by using generic training set. 

(2) In order to use the intra-class variation information of virtual samples generated by 
kNNVSG to better learn low-dimensional feature space, we propose image set based 
multimanifold discriminant learning (ISMMDL) algorithm. It is different from single gallery 
sample based multimanifold discriminant learning algorithms and can use both the original 
single gallery sample image and generated virtual sample images of each class simultaneously. 

(3) By comprehensively using our proposed kNNVSG and ISMMDL algorithms, we 
propose k nearest neighbor virtual image set based multimanifold discriminant learning 
(kNNMMDL) approach for performing SSFR tasks. 

The rest of the paper is organized as follows. In Section 2, we briefly review related work. In 
Section 3, we give detailed description of our proposed approach. Experimental results are 
reported in Section 4. And conclusions are drawn in Section 5. 

2. Related Work 
In recent years, some methods have been proposed to address the SSFR problem. Those 
methods can be classified into three main categories: virtual sample generating methods, 
generic learning methods and image partitioning based methods. 
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(1) Virtual sample generating methods. For this category, some additional training samples 
for each person are virtually generated such that discriminative subspace learning can be used 
for feature extraction. For example, Zhang et al. [20] and Gao et al. [21] proposed methods to 
address the SSFR problem based on singular value decomposition (SVD), respectively. Vetter 
[22] proposed a 3D virtual sample generating method. Although these methods can alleviate 
SSFR problem to a certain extent, one common shortcoming of these methods is that there is 
high correlation among the virtual samples as they cannot be considered as independent 
samples for feature extraction [15]. 

(2) Generic learning methods. Methods of this type first extract discriminative features from 
an additional generic training set which contains multiple samples per person (MSPP), then 
those features are subsequently used for SSFR. For example, Su et al. [23] proposed to adapt 
the within-class and between-class scatter matrices computed from a generic training set. Si et 
al. [24] proposed a transfer subspace learning method which uses the discriminative model 
learned from generic training set to perform SSFR. Based on the simple observation that 
similar subjects have similar intra-personal variations, Wang et al. [25] designed an adaptive 
linear regression classifier (ALRC) for SSFR. Assuming that the intra-class variations of one 
subject can be approximated by a sparse linear combination of those of other subjects, Deng et 
al. [26] proposed extend SRC (ESRC) for SSFR. Considering the fact that the intra-class facial 
variations can be shared across different subjects, Zhu et al. [14] proposed a local generic 
representation (LGR) based framework for face recognition with SSPP. Based on the 
assumption that generic training set is full enough with sufficient variations, a collaborative 
probabilistic labels (CPL) method was developed [13]. By transferring the intra-class 
variations of the generic training set to that of the gallery set, a discriminative transfer learning 
(DTL) method was designed for SSFR [11, 27]. Yang et al. [28] proposed a sparse variation 
dictionary learning (SVDL) method. 

(3) Image partitioning based methods. These methods first partition images of each person 
into local patches then extract discriminative features of those local patches and subsequently 
conduct classification based on the extracted discriminative features. For example, aiming to 
address the occlusion problem in SSFR, Martinez [15] proposed a method which divides a 
face image into local patches and then a probabilistic approach is used to find the best match. 
Chen et al. [19] proposed to divide each face image into several sub-images with the same size, 
therefore obtaining multiple training samples for each class, and then apply FLDA to the 
newly produced samples. Zhu et al. [18] proposed a patch based CRC (PCRC) method which 
applies the collaborative representation based classification (CRC) [29] to each patch. Gao et 
al. [30] proposed a regularized patch-based representation for SSFR, which represents each 
image by a collection of patches and seeks their sparse representations under the gallery image 
patches and intra-class variance dictionaries at the same time. The methods mentioned above 
ignore the geometrical information of local patches in feature extracting process. Aiming to 
seek multiple projection matrices to uncover the geometrical information of manifolds 
modeled by local patches, Lu et al. [17] formulated SSFR as a manifold-manifold matching 
problem in low-dimensional feature space. In [14], Zhang et al. also formulated SSFR task as 
manifold matching problem, and proposed a two-step scheme for SSFR task. Unlike the 
conventional image partitioning methods, Pei et al. [9] proposed a nonparametric method 
termed decision pyramid classifier (DPC), which does not require a training process. 

In this paper, by comprehensively using our proposed kNNVSG and ISMMDL algorithms, 
we propose an approach called kNNMMDL for SSFR tasks. The main characteristics of 
kNNMMDL approach are the following three aspects. (1) For the given gallery set with only a 
single sample per person, we can obtain an extended gallery set with multiple samples per 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018                                   371 

person by using our proposed kNNVSG algorithm and generic training set, which can enrich 
intra-class variation information for training samples. (2) By employing Weber-face algorithm 
[31] to conduct illumination normalization on sample images, we can obtain the 
illumination-insensitive representations of those sample images, which can alleviate the 
adverse effect caused by illumination variations on face recognition performance. (3) Both the 
only single gallery sample and generated virtual samples of each class can be used 
simultaneously in our proposed ISMMDL algorithm, which can take full advantage of the 
intra-class variation information of those samples to learn better low-dimensional feature 
space. 

3. Our Approach 
In this section, we first introduce our proposed virtual sample generating algorithm kNNVSG 
which is used to enrich the intra-class variation information for training samples. Then, the 
Weber-face algorithm [31] which is used to alleviate the illumination problem in face 
recognition is described. After that, we represent our proposed ISMMDL algorithm. 
Sequentially, we depict the classification scheme for query sample. Finally, we describe the 
procedures of our proposed SSFR approach kNNMMDL in detail, which comprehensively 
uses our proposed kNNVSG and ISMMDL algorithms. 

Assume that 1 2[ , ,..., ]NX x x x=  denotes the given gallery set, where d
ix ∈ℜ , 1,2,...,i N= , 

N  indicates the sample number of the gallery set, d m n= × , m  and n  are width and height 
of original gallery images of the gallery set, respectively. The class number of gallery samples 
of the gallery set X  is N , i.e., there is only a single sample per class in the gallery set X . 

 

3.1 k Nearest Neighbors based Virtual Sample Generating (kNNVSG) 
 
Inspired by generic learning [25, 26, 28], we propose kNNVSG algorithm. Assume that 

1 2[ , ,..., ]JG G G G=  denotes the introduced generic training set, where J  indicates the class 
number of the objects of the generic training set, [ , ]j j jG r Q=  represents the face image 
sample subset corresponding to the thj  class in the generic training set. In the subset jG , jr  
denotes a reference sample of the thj  class, and 1 2[ , ,..., ]j j j jVQ q q q=  represents a variation 
set of the thj  class where V  is the category number of intra-class variations of jQ . 
Furthermore, we assume that the dimensionality of the samples in the generic training set is 
identical to that of the samples in gallery set, i.e., d

jr ∈ℜ , d
jvq ∈ℜ , 1,2,...,j J= , 

1,2,...,v V= . Fig. 1 illustrates a number of sample images of three persons from a generic 
training set, where each person includes a reference sample (shown in solid box) and a 
variation set (shown in dashed box) which includes illumination, expression and disguise 
variations. 
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It is generally known that the shape of faces is highly similar. And, intra-class variations of 

the same category are significantly similar as well. For example, screaming is usually 
accompanied with mouth open. For human face images, similar objects typically have similar 
intra-class variations [25]. An intuitive illustration of this observation is displayed in Fig. 1(a) 
and Fig. 1(b). Therefore, the intra-class variation of any gallery face can be approximated by 
those of the similar faces pulled from generic training set which contains sufficient samples. 
Hence, we can generate virtual samples by employing sample images from generic training set 
and the single gallery sample of each class to enrich the intra-class variation information of the 
class. 

Given the only single gallery sample ix  of the thi  class in the gallery set X , assume that 
( )iN x  denotes the nearest neighbor sample set of ix  where the elements of ( )iN x  come from 

the reference sample set 1 2[ , ,..., ]JR r r r= , ( ( ))iC N x  represents the class label set which 
contains the class label of each sample in ( )iN x , and 0k  indicates the sample number of 

( )iN x . Following the practice described in [19] for representing intra-class variation of face 
image, we give the procedures of our proposed virtual sample generating algorithm kNNVSG 
as follows. 

First, we select variation sets which satisfy ( ( ))ij C N x∈  from variation sets 1{ }J
j jQ = , i.e., 

the selected variation sets are { | ( ( ))}j iQ j C N x∈ . Furthermore, by using the reference sample 

jr  and the thv  sample jvq  in variation set jQ , we extract the intra-class variation feature of 
the thv  type of the thj class, which is denoted as jv jv jvar q r= − , where ( ( ))ij C N x∈ , 

1,2,...,v V= . Finally, we fuse intra-class variation features of the thv  type of 0k  objects with 

ix  to obtain the thv  virtual sample ivx  for the thi  class, where iv i vx x VAR= + , 

( ( ))0

1

i

v jv
j C N x

VAR var
k ∈

= ∑ , 1,2,...,v V= . 

By combining the V  virtual samples 1 2, ,...,i i iVx x x    and the gallery sample ix  together, we 
can obtain the extended training samples 1 2[ , , ,..., ]i i i i iVX x x x x=     of the thi class. For the sake 
of convenience, we denote iX  as 0 1 2[ , , ,..., ]i i i i iVX x x x x=     , where 0i ix x= . Similarly, we can 
generate virtual samples for each class, and then the extended gallery set denoted by 

1 2[ , ,..., ]NX X X X=     can be obtained, where 0 1 2[ , , ,..., ]i i i i iVX x x x x=     , 1,2,...,i N= . Fig. 2 
demonstrates the last step of the virtual sample generating algorithm kNNVSG. Fig. 2(a) 

...

...

...

(a)

(b)

(c)

 
Fig. 1. Illustration of a number of sample images of three objects from a generic training set. 
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illustrates a gallery sample image of original gallery set X . Fig. 2(b) shows the visual 
presentations of the intra-class variation features of five different types (illumination, simile, 
screaming, glasses and scarf), where the intra-class variation features are extracted from the 
samples of the variation sets of 0k  objects. And Fig. 2(c) illustrates five virtual sample images 
generated by fusing the images in Fig. 2(a) and Fig. 2(b). 

 

 

3.2 Illumination Process 
Since facial appearance variations caused by illumination variations are more severe than 
those caused by the difference of identity, most existing face recognition methods are sensitive 
to illumination variations [32]. Weber’s law suggests that for a stimulus, the ratio between the 
smallest perceptual change and the background is a constant, which implies stimuli are 
perceived not in absolute terms but in relative terms [33]. Given a face image, for each pixel 
we can compute a ratio between two terms: one is the relative intensity difference of the 
current pixel against its neighbors; the other is the intensity of the current pixel. Furthermore, 
we can obtain ratio image based on the ratio, which can extract the local salient patterns very 
well from input image and is an illumination-insensitive representation of input image. Wang 
et al. call the ratio image as Weber-face [31]. 

 

Algorithm 1. Weber-face algorithm. 
Input: 2D face image ( , ) m nF x y ×∈ℜ . 
Algorithm procedures: 

(1) Smoothen ( , )F x y  with a Gaussian filter to obtain ( , )F x y


, i.e., 

( , ) ( , ) ( , , )F x y F x y G x y σ= ∗


, where ∗  is the convolution operator, and 

( )2 2 2
2

1( , , ) exp ( ) 2
2

G x y x yσ σ
pσ

= − +  is the Gaussian kernel function with standard 

deviation σ . 
(2) Process ( , )F x y



 with Weber local descriptor to obtain ( , )WF x y , i.e., 

( , ) ( ( , ))WF x y WLD F x y=


, where ( )WLD ⋅  is the Weber local descriptor: 

( , ) ( , )( ( , )) arctan
( , )i A j A

F x y F x i x y j yWLD F x y
F x y

a
∈ ∈

 − − D − D
=  

 
∑∑

 



 , in which { 1,0,1}A = − , x∆  

and y∆  are positive integers used to indicate the size of local neighborhood of a pixel point. 
Output: Weber-face ( , )WF x y . 

 

(a)

+

=
(b)

(c)

 
Fig. 2. Illustration of the last step of the kNNVSG method. 
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In order to alleviate the adverse effect caused by illumination variations on face recognition 

performance, we employ the Weber-face algorithm proposed by Wang et al. [31] to conduct 
illumination normalization for the sample images of the extended gallery set X . Assume that 

( , ) m nF x y ×∈ℜ  denotes a 2D face image which needs to conduct illumination normalization. 
The procedures of Weber-face algorithm are shown in Algorithm 1. 

For the extended gallery set X , when all sample images are normalized with Weber-face 
algorithm, we denote the normalized extended gallery set as 1 2

ˆ ˆ ˆ ˆ[ , ,..., ]NX X X X= , where 

0 1 2
ˆ ˆ ˆ ˆ ˆ[ , , ,..., ]i i i i iVX x x x x= , 1,2,...,i N= , ˆ d

ivx ∈ℜ , 0,1,...,v V= , d m n= × . Fig. 3(a) shows five 
images with different illumination variations. Fig. 3(b) illustrates five normalized images, 
which are normalized by using Weber-face algorithm, corresponding to the five images shown 
in Fig. 3(a), respectively. 

 

 
 

3.3 Image Set based Multimanifold Discriminant Learning (ISMMDL) 
 
3.3.1 Manifold Modeling Procedures of ISMMDL 
When a face image is divided into several local patches, they semantically represent different 
parts (e.g., nose, mouth and eyes) of the original face image, and may not be modeled 
accurately by a simple distribution [17]. It is more likely that these patches reside in a manifold 
and each patch corresponds to a point in the manifold [34, 35]. In this paper, we divide all 
sample images of each class of the normalized extended gallery set into a few non-overlapping 
local patches. Furthermore, we model all local patches of each class as a manifold and make 
each local patch corresponding to a point in the manifold. There are two main reasons for us to 
model all local patches of a class as a manifold. On the one hand, class-specific feature 
representation and extraction methods usually can achieve better recognition accuracy, which 
is because class-specific methods employ the information that is especially effective for a 
given class [36-38]. On the other hand, the optimal feature dimension for each specific class 
may be different due to the intrinsic differences of different classes. Therefore, we model all 
local patches of a class as a manifold such that we can optimize an optimal feature dimension 
for specific class. 

The procedures of manifold construction based on image local patches are described in 
detail as follows. 

 
 

(a)

(b)

 
Fig. 3. Five images with different illumination variations and five images normalized by using 

Weber-face algorithm. 
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(1) Assume that the size of one local patch is a b× . For the thv  training sample ˆ d

ivx ∈ℜ  
( d m n= × ) of the thi class, we can obtain ( ) ( )S m n a b= × ×  non-overlapping local patches 
by dividing the 2D image with the size of m n× , which is reconstructed from ˆivx . 

(2) Similarly, we divide each training sample image of the thi  class into S  
non-overlapping local patches with the size of a b× . 

(3) Furthermore, we construct a manifold ˆ{ | 0,..., , 1,..., }i ivsM x v V s S= = =  by employing 
the column vectors vectorized from all local patches of the thi  class, where ˆ pd

ivsx ∈ℜ , 

pd a b= × . Meanwhile, we make each vector as a point in the manifold. 
Similarly, we can construct N  manifolds corresponding to N  classes of the normalized 

extended gallery set, and then a manifold set 1 2[ , ,..., ]NM M M M=  can be obtained, where 
ˆ{ | 0,..., , 1,..., }i ivsM x v V s S= = = , 1,...,i N= . 

 
3.3.2 Objective Function of ISMMDL 
In manifold set M , each manifold is constructed by a number of local patches. The same 
semantic local patches, such as the eye local patches or the nose local patches, always have a 
certain extent similarity in gray scale value, texture or directional amplitude features. 
Therefore, for the multiple manifolds in the original feature space, the distances between local 
patches of same semantic type in different manifolds are closer than those between local 
patches of different semantic types in the same manifold. That is, different manifolds are 
highly overlapped in original feature space [17]. 
 

 

 
We illustrate the above phenomenon and the aim of our proposed algorithm ISMMDL using 

Fig. 4. In Fig. 4(a) and Fig. 4(b), the images in the green dashed box and the red solid box are 
face images of two different classes (labeled as P1 and P2 respectively). We divide the images 
of the two classes into several local patches and model them as manifold M1 and manifold M2 
respectively, which are shown in Fig. 4(c). In original feature space, the distance between the 
eye local patches of manifolds M1 and M2 is small (the same phenomena also exists in nose 

(c) (d)

Projection
Manifold
margin

(a)

P1 P2

(b)

P1 P2

M1 M2

 
Fig. 4. Illustration of the traits of manifolds in original feature space and the aim of image 

set based multimanifold discriminant learning (ISMMDL) algorithm. 
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local patches and mouth local patches of different manifolds). However, the distance between 
eye local patches and nose local patches (nose local patches and mouth local patches, etc.) in 
the same manifold (manifold M1 or M2) is large [17]. Hence, the distribution of the local 
patches of each manifold is not suitable for the classification of manifolds. These phenomena 
are also illustrated in Fig. 4(c). Therefore, for ISMMDL, we aim to learn a discriminant 
projection matrix, which is used to construct a low-dimensional feature space, for each 
manifold (i.e., each class or each person) to better conduct classification. That is, the aim of 
ISMMDL is that the distances between local patches of different semantic types in the same 
manifold are minimized and the distances between local patches of the same semantic type in 
different manifolds are maximized simultaneously in low-dimensional feature space. In other 
words, the margins of intra-manifold need to be minimized and the margins of inter-manifold 
need to be maximized simultaneously in the low-dimensional feature space learned by 
ISMMDL. Fig. 4(d) is the illustration of two manifolds obtained by projecting the two original 
manifolds into the low-dimensional feature space which is constructed by two learned 
projection matrices corresponding to manifolds M1 and M2 respectively. 

Given a local patch sample ˆivsx  of the thi manifold iM , there are usually two types of 
neighbor in manifolds of manifold set M : (1) intra-manifold neighbors intraNei , i.e., the local 
patch samples of intraNei  and the local patch sample ˆivsx  belong to the same manifold; (2) 
inter-manifold neighbors interNei , i.e., the local patch samples of interNei  and the local patch 
sample ˆivsx  belong to different manifolds. From the viewpoint of classification, we need the 
distances between the nearest neighbors from different manifolds as far as possible and the 
distances between the nearest neighbors from the same manifold as close as possible in 
low-dimensional feature space. 

In the learning process, we cannot priori determine the significance of the variation feature 
of each type and that of the variation feature of gallery samples. As a result, we need to learn 
weights for those variation features in our proposed multimanifold discriminant learning 
algorithm ISMMDL. 

Based on the above analysis, we formulate the objective function of ISMMDL as follows: 
1 22 2

, 1 0 1 1 1 0 1 11 2

0

ˆ ˆ ˆ ˆmax

. . 1, 0

k kN V S N V S
T T T Tv v

i ivs i ivsp ivsp i ivs i ivsq ivsqW i v s p i v s q

V

v v
v

W x W x A W x W x B
k k

s t

q

q q

q q

= = = = = = = =

=

   
− − −   

   

= ≥

∑∑∑ ∑ ∑∑∑ ∑

∑
,    (1) 

where 1 2{ , ,..., }NW W W W= , W  contains N  matrices learned for each manifold, 
0 1{ , ,..., }Vθθθθ   = , 0θ  denotes the weight of the variation feature of gallery samples, 

1 2, ,..., Vθθθ    denote the weights of variation features of V  different types respectively, ˆivspx  
denotes the thp  inter-manifold nearest neighbor of ˆivsx , ˆivsqx  denotes the thq  intra-manifold 
nearest neighbor of ˆivsx , ivspA  and ivsqB  are the elements of two affinity matrices. ivspA  
represents the similarity between ˆivsx  and ˆivspx , and is used to ensure that if ˆivsx  and ˆivspx  are 
close and from different manifolds, then their low-dimensional representations are separated 
as far as possible. ivsqB  represents the similarity between ˆivsx  and ˆivsqx , and is utilized to 
ensure that if ˆivsx  and ˆivsqx  are close and from the same manifold, then their low-dimensional 
representations are close as well. The definition of ivspA  and ivsqB  are listed as follows: 
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( ) ( )2 2
1ˆ ˆ ˆ ˆexp , if

0, otherwise

ivs ivsp ivsp inter ivs
ivsp

x x x Nei x
A

s − − ∈= 


,                              (2) 

( ) ( )2 2
1ˆ ˆ ˆ ˆexp , if

0, otherwise

ivs ivsq ivsq intra ivs
ivsq

x x x Nei x
B

s − − ∈= 


.                              (3) 

 
where ( )ˆinter ivsNei x  and ( )ˆintra ivsNei x  denote the 1k  inter-manifold neighbors and 2k  
intra-manifold neighbors of ˆivsx , respectively. 1σ  is a scaling parameter that controls how fast 
the affinity decreases as the distance between two local patch samples increases, and we set 1σ  
as the standard deviation of all local patch samples, empirically. 
 
3.3.3 Optimization of the Objective Function of ISMMDL 
The unknown variables to be solved in the objective function (1) include two parts, i.e., 
manifold discriminant projection matrices 1 2{ , ,..., }NW W W W=  and variation feature weights 

0 1{ , ,..., }Vθθθθ   = . To our best knowledge, there is no closed-form solution for the 
optimization problem defined in (1) as there are N  projection matrices and 1V +  weights to 
be solved simultaneously. Therefore, in this paper, we apply an alternating optimization 
approach [39] to solve the problem defined in (1). Specifically, we first initialize θ  with valid 
solution to solve W , and then update θ  by fixing W . 

In order to facilitate the representation of optimization process, we transform the objective 
function (1) into  

( ) ( )1 2, 0
max , , . . 1, 0

V

v vW v
J W J W s t

θ
θθθθ  

=

− = ≥∑ ,                               (4) 

where  
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1 0 1 11
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kN V S
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i v s p
J W W x W x A

k
θ

θ
= = = =

 
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( )
2 2

2
1 0 1 12

ˆ ˆ,
kN V S

T Tv
i ivs i ivsq ivsq

i v s q
J W W x W x B

k
q

q
= = = =

 
= − 

 
∑∑∑ ∑ .                              (6) 

(1) Solving W  by fixing θ  
When we initialize 0 1{ , ,..., }Vθθθθ   =  with valid solution and fix them to solve W , we still 

cannot solve the N  projection matrices of W  simultaneously. Hence, we also solve this 
problem by employing alternating optimization technique. The basic idea is to first initialize 

1 2 1 1, ,..., , ,...,i i NW W W W W− +  with a valid initial solution, and then solve iW  sequentially. 
Given θ  and 1N −  projection matrices 1 2 1 1, ,..., , ,...,i i NW W W W W− + , ( )1 ,J W θ  and 
( )2 ,J W θ  in objective function (4) can be written as  
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where 
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In (9) and (10), 1C  and 2C are two constant matrices which can be ignored as they do not 
affect the optimization of iW . Hence, ( )1 iJ W  can be written in the following form: 
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where ( )tr ⋅  denotes the trace, 

( )( )
1

1
0 1 11

ˆ ˆ ˆ ˆ
kV S Tv

ivs ivsp ivs ivsp ivsp
v s p

D x x x x A
k
θ

= = =

= − −∑∑ ∑ .                                        (12) 

Similarly, we can simplify ( )2 iJ W  as follows: 
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where 
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In summary, the objective function of iW  can be simplified as follows: 
( ) ( ) ( ) ( )( )1 2 1 2max

i

T T T
i i i i i i iW

J W tr W DW tr W D W tr W D D W= − = − .                       (15) 

The optimal solution of (15) is equivalent to the solution of the following eigenvalue equation 
[17]: 

( )1 2D D w wλ− = .                                                            (16) 
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Let 1 2{ , ,..., }
idw w w  be the eigenvectors corresponding to the id  largest eigenvalues 

1 2{ , ,..., }
idλ λ λ  ordered in such a way that 1 2 ...

idλ λ λ≥ ≥ ≥ . Then, 1 2[ , ,..., ]
ii dW w w w=  is the 

optimal solution of projection matrix iW . 
Here, we discuss how to determine the feature dimension id  for the thi  projection matrix 

iW . Because there are N  feature dimension numbers corresponding to N  projection matrices 
of N  different manifolds to be determined, that is, there are 1ΠN

i id=  candidates to be searched 
to determine the N  optimal feature dimension numbers. Hence, it is time-communing if we 
empirically select the optimal feature dimensions for each projection matrix. According to the 
practice of literature [17], we adopt the automatic dimension determination method to 
determine the optimal feature dimensions by analyzing the eigenvalues of 1 2( )D D− . That is, 
we select the eigenvectors whose corresponding eigenvalues are greater than zero to construct 
projection matrix iW . 

(2) Solving θ  by fixing W  
When we fix the projection matrices 1 2, ,..., NW W W , the original objective function (1) is 

written as: 

( ) ( )1 2
0 0

max . . 1, 0
V V

v v v v v
v v

J tr F F s t
θ

θθθθ  
= =
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Having solved θ  of (17), we find that the solution to θ  in (17) is 1vθ =  corresponding to 
the maximum 1 2( )v vtr F F−  over different variation features, and 0vθ =  otherwise. This 
solution indicates that we do not take full advantage of the multiple facial variation features of 
generated virtual samples. Such an optimal solution violates the motivation of the ISMMDL 
algorithm. To address the problem, we modify vθ  to be ( )a

vθ  in objective function (17), 
where 1a > , and the new objective function of (17) is defined as 

1 2
0 0

max ( ) ( ) ( ) . . 1, 0
V V

a
v v v v v

v v
J tr F F s t

θ
θθθθ  

= =

= − = ≥∑ ∑ .                                   (20) 

We solve (20) by employing Lagrangian multiplier method. First, we construct a Lagrange 
function as follows: 

1 2
0 0

( , ) ( ) ( ) 1
V V

a
v v v v

v v
L tr F Fθ λ θ λ θ

= =

 
= − − − 

 
∑ ∑ .                                         (21) 

Then, let ( , ) 0
v

L θ λ
θ

∂
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∂
 and ( , ) 0L θ λ

λ
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=
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, we have 

1
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v
v
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=
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Combining (22) and (23), we can obtain 
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( ) ( )

( ) ( )

1 1
1 2

1 1
1 2

0

1 ( )

1 ( )

a
v v

v V
a

v v
v

tr F F

tr F F
θ

−

−

=

−
=

−∑
.                                                     (24) 

 

3.4 Classification Scheme for Query sample 
In this section, we describe the classification scheme for query sample in detail, which mainly 
contains three procedures. 

(1) Illumination normalization of query sample and manifold construction 
Given a query sample dz∈ℜ  ( d m n= × ), we deal it with the following procedures. The 

first step is transforming z into a 2D image with the size of m n× . The second step is 
conducting illumination normalization on the 2D image to obtain a normalized 2D image 
ˆ m nz ×∈ℜ  by employing Weber-face algorithm [31]. The third step is dividing ẑ  into 

( ) ( )S m n a b= × ×  non-overlapping local patches with the size of a b× . The fourth step is 
representing each local patch as a vector, and modeling all vectors as a manifold 

ˆ{ | 1,..., }pd
z sM z s S= ∈ℜ =  where pd a b= × . 
(2) Computing the distances between the manifold of query sample and the manifolds in 

manifold set M  
In order to label the query sample z , the most significant procedure is computing the 

distance between the manifold zM  and the manifold iM  in low-dimensional feature space. In 
this paper, we compute the distance between two manifolds based on the distances between 
point and nearest neighbor points. The distance between zM  and iM  is defined as follows:  

( )

2

ˆ ˆ1 3

1 ˆˆ( , )
ivs s

S
T Tv

z i i s i ivs
s x Nei z

d M M W z W x
S k

θ
= ∈

= −∑ ∑ ,                                         (25) 

where ˆ( )sNei z  denotes the nearest local patches in manifold iM  of the local patch ˆsz , and 
ˆ( )sNei z  includes 3k  nearest local patches. As can be seen from (25), the distance ( , )z id M M  

between two manifolds is the mean distance of the distances between each local patch ˆsz  in 
manifold zM  and the nearest local patches in manifold iM . 

(3) Obtaining the class label of query sample 
We can obtain the distances 1{ ( , )}N

z i id M M =  between the manifold zM  and N  manifolds 

1 2, ,..., NM M M  by employing the (25) defined in procedure (2) above. Then, the class label of 
query sample z  can be achieved by the equation as follows: 

( ) arg min{ ( , )}z ii
label z d M M= .                                              (26) 

That is, the class label of query sample z  is the class label of the manifold which has the 
minimal distance to the manifold zM . 
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3.5 Our SSFR Approach kNNMMDL 

 
In this section, we introduce how to comprehensively use our proposed two algorithms, i.e., 
kNNVSG and ISMMDL algorithms, and the Weber-face algorithm proposed by Wang et al. 
[31] to formulate a SSFR approach. We call our SSFR approach as k nearest neighbor virtual 
image set based multimanifold discriminant learning (kNNMMDL) which is detailedly 
described in Algorithm 2. 

4. Experiments 
We conduct experimental evaluation on three public datasets, which are AR [40], Multi-PIE 
[41] and LFW [42] datasets. Some example face images on the three datasets are shown in Fig. 
5. We compare our kNNMMDL approach with the following methods of three different 
categories. (1) Virtual sample generating methods: extension of singular-value-perturbed 
version of PCA (SPCA+) [20] and singular value decomposition-based Fisher linear 
discriminant analysis (SVD-FLDA) [21]. (2) Generic learning methods: local generic 
representation (LGR) [14], adaptive generic learning (AGL) [23], extended SRC (ESRC) [26], 
collaborative probabilistic labels (CPL) [13] and sparse variation dictionary learning (SVDL) 
[28]. (3) Image partitioning based methods: discriminative multimanifold analysis (DMMA) 
[17], patch based CRC (PCRC) [18] and block linear discriminative analysis (Block LDA) 
[19]. We report the best recognition accuracy [21] of each method for different experimental 
scenarios. The recognition accuracy is defined as the ratio between the number of query 
samples which are correctly classified to the true classes and the number of all query samples. 
The higher the recognition accuracy is, the better performance the method owns. 
 

Algorithm 2. kNNMMDL algorithm. 
Input: gallery set 1 2[ , ,..., ]NX x x x= , generic training set 1 2[ , ,..., ]JG G G G= , query sample 
z . 
Algorithm Procedures: 

(1) Generating virtual samples to obtain extended gallery set 1 2[ , ,..., ]NX X X X=     by using 
kNNVSG algorithm based on gallery set X  and generic training set G . 

(2) Conducting illumination normalization for the sample images in the extended gallery set 
X  to obtain the normalized extended gallery set 1 2

ˆ ˆ ˆ ˆ[ , ,..., ]NX X X X= , which is a 
illumination-insensitive representation of X  and can be used to alleviate the illumination 
problem in face recognition , by utilizing the Weber-face algorithm [31]. 

(3) Solving manifold discriminant projection matrices 1 2{ , ,..., }NW W W W=  and variation 
feature weights 0 1{ , ,..., }Vθθθθ   =  by employing ISMMDL algorithm and the normalized 
extended gallery set X̂ . 

(4) Computing 1{ ( , )}N
z i id M M =  by using (25). 

Output: ( ) arg min{ ( , )}z ii
label z d M M= . 
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4.1 Parameter Settings 
For all contrast methods, we carefully adjust their parameters so that they can achieve the 
optimal results. For SPCA+, parameters θ , α  and n  are set to 0.95, 0.25 and 1.25, 
respectively. For SVD-FLDA, the first three singular values and corresponding singular 
vectors are used to construct the virtual samples which are used to calculate within-class 
scatter matrix. For LGR, the regularization parameter λ  is fixed as 0.001, and the kernel 
function parameter σ  is set adaptively as stated in the literature [14]. For CPL, the parameter 
λ  in collaborative representation is set to 0.01, and the parameters in group sparse coding are 
set following the suggestions in [13]. For SVDL, following the parameter settings of literature 
[28], parameters 1λ , 2λ  and 3λ  are set to 0.001, 0.01 and 0.0001 respectively; and we 
initialize the number of dictionary atoms as 400. For all image partitioning based methods, 
such as DMMA, PCRC, Block LDA and our proposed approach kNNMMDL, the 
corresponding patch size is set as 20×20 empirically. For DMMA, parameters 1k , 2k , k  and 
σ  are set to 15, 5, 4 and 100, respectively. For PCRC, the optimal regularization parameter is 
chosen from {0.0005,0.001,0.005,0.01}. Since AGL and Block LDA are sensitive to feature 
dimensions, we report the optimal results corresponding to different feature dimensions. For 
our proposed approach kNNMMDL, parameters 0k , 1k , 2k , 3k  and 1σ  are set to 3, 20, 5, 4 
and 100, respectively. 

4.2 Experiments on AR Dataset 
The AR face dataset [40] contains about 4000 color face images of 126 people (70 males and 
56 females), which consists of the frontal faces with different facial expressions, illuminations 
and disguises (glasses and scarf). There are two sessions and each session has 13 face images 
per object. Following the SSFR experiment setting in literature [26], a subset with face images 
of 50 males and 50 females is selected for experiments. The face images in the subset are 
cropped to the size of 80×80. We select the face images with non-illumination and natural 
expression of 80 objects in session 1 to construct the gallery set. All images (with different 
expressions, illuminations and disguises) in session 2 are used to construct the query set. 
Furthermore, in order to evaluate the robustness of our approach to illumination, expression 
and disguise, we split the query set into four subsets (i.e., Illumination subset, Expression 
subset, Disguise subset and Illumination+Disguise subset) to observe the face recognition 
performance of each subset respectively. We use the images of the remaining 20 objects in 
session 1 to build the generic training set, where the images of the 20 objects with 
non-illumination and natural expression are used to construct reference image set and the 
remainder images of the 20 objects are used to build variation image set. 
 

(c) LFW

(b) Multi-PIE

(a) AR

 
Fig. 5. Example face images of three datasets. 
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Table 1 tabulates the recognition accuracies of all methods on the four different query 
subsets mentioned above. As shown in Table 1, our approach kNNMMDL achieves the best 
performance on all the four different query subsets. Specifically, our kNNMMDL approach 
outperforms the LGR method by 0.8%(=98.3%-97.5%), 7.5%(=92.5%-85.0%), 
1.3%(=95.1%-93.8%) and 2.8%(=91.6%-88.8%) on illumination query subset, expression 
query subset, disguise query subset, and illumination+disguise query subset respectively. 
When the intra-class variations of a query sample image do not exist in the original single 
gallery sample image of the class of the query sample image, the intra-class variations of the 
query sample image cannot be predicted, which leads to the face recognition performance 
decrease. In DMMA method, since the DMMA method does not specifically handle the 
illumination, expression and occlusion variations, it achieves poor performance especially on 
the Disguise query subset and Illumination+Disguise query subset. The SPCA+ and 
SVD-FLDA methods achieve poor performance on all the four query subsets. This is because 
the gallery sample images which are used to train prediction models are images with 
non-illumination and natural expression and do not have the variation features of illumination, 
expression and disguise. Besides, there is no specific process to supplement the variation 
features used to predict the intra-class variations of query samples. Note that because the 
expressions and disguises (i.e., glasses and scarf) can be well handled by patch based methods, 
the face recognition performance of patch based methods such as LGR and our kNNMMDL 
are relatively competitive in this experiment. The other reasons that our kNNMMDL approach 
can achieve optimal face recognition performance are the following two aspects. On the one 
hand, using the Weber-face algorithm to normalize the illumination of sample images can 
alleviate the adverse effect caused by illumination variations on face recognition performance. 
On the other hand, employing generic training set to enrich the intra-class variation 
information for training samples can enable our proposed approach handling the intra-class 
variations which do not exist in the original single gallery sample of each class. 

 

 

4.3 Experiments on Multi-PIE Dataset 
The Multi-PIE dataset [41] contains more than 750000 images from 337 individuals, which 
are captured under 15 viewpoints and 19 illumination conditions in up to four recording 
sessions. Among the 337 people, 129 people have image acquisition in four sessions. In our 
experiments, images are cropped to the size of 80×80. We select frontal images in session 2 to 

Table 1. Recognition accuracies (%) on four query subsets of AR dataset (bold 
numbers indicate the best results). 

Method Illumination Expression Disguise Illumination 
+Disguise 

SPCA+[20] 37.5 55.2 26.9 22.5 
SVD-FLDA[21] 32.5 57.1 24.4 16.3 
LGR[14] 97.5 85.0 93.8 88.8 
AGL[23] 70.8 55.8 40.6 30.7 
ESRC[26] 87.9 70.4 59.4 45.0 
CPL[13] 95.7 88.3 71.6 69.3 
SVDL[28] 87.1 74.2 61.3 54.1 
PCRC[18] 88.8 71.7 81.8 63.1 
Block LDA[19] 54.7 61.2 31.9 21.0 
DMMA[17] 77.9 61.7 28.1 21.9 
kNNMMDL 98.3 92.5 95.1 91.6 
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construct the gallery set and generic training set. Concretely, we use images with 
non-illumination and natural expression of 100 objects to build the gallery set. And we use 
images of the remaining 103 objects to construct the generic training set, where images with 
non-illumination and natural expression are used as reference images, and images with natural, 
surprising and squint expressions under f06, f07 and f08 illumination conditions are used to 
construct variation set. Frontal images in session 3 and session 4 under f06, f07 and f08 
illumination conditions are selected to construct four query sets. Specifically, we choose 
images under those illumination conditions separately with natural, smile and disgust 
expressions in session 3 and images under those illumination conditions with screaming 
expression in session 4 to construct the four query sets. 

Table 2 tabulates the recognition accuracies of each method on the four query sets of 
session 3 and session 4. As can be seen from Table 2, our approach achieves distinctly better 
performance than the other methods on the four query sets. From the experimental results, we 
find that our approach kNNMMDL still achieves good face recognition performance for the 
images under f06, f07 and f08 illumination conditions in the four query sets even though the 
images in gallery set are images with non-illumination. This is because: (1) the generated 
virtual samples can enrich the illumination variations for training samples; (2) the illumination 
normalization for the sample images with illumination variations can alleviate the negative 
influence for face recognition performance. Meanwhile, we find that although our approach 
does not generate virtual samples to enrich disgust and screaming expression variations for 
training samples, it still achieves good face recognition performance on S3-Disgust and 
S4-Scream query sets. The reasons are that there are imges with surprising and squinting 
expressions in generic training set and those imges can be used to generate virtual samples to 
enrich the expression variations of surprising and squinting for training samples. Significantly, 
the expressions of squinting and surprising are separately similar to the expressions of disgust 
and screaming. In contrast, the face recognition performance is relatively poor in S3-Smile 
query set, which is because there do not exist imges with smile expression to be used for 
generating virtual samples to enrich the expression variation of smile for training samples. For 
CPL, it achieves a comparable recognition accuracies except in S3-Smile, S3-Disgust and 
S4-Scream query sets. This is because CPL is based on the assumption that generic training set 
is full enough with sufficient variations. However, there do not exist the intra-class variations 
of Smile, Disgust and Scream in the generic training set which is used in the experiments. 

 

 

Table 2. Recognition accuracies (%) on four query sets of Multi-PIE dataset 
(bold numbers indicate the best results). 

Method S3-Neutral S3-Smile S3-Disgust S4-Scream 
SPCA+[20] 48.4 36.7 40.6 38.5 
SVD-FLDA[21] 54.3 43.2 48.1 45.9 
LGR[14] 91.8 81.6 86.3 84.1 
AGL[23] 82.4 52.8 57.7 56.1 
ESRC[26] 86.2 68.4 72.5 71.2 
CPL[13] 92.6 70.5 77.2 76.3 
SVDL[28] 88.5 72.4 76.8 74.9 
PCRC[18] 74.2 67.5 71.5 70.9 
Block LDA[19] 58.8 47.7 51.1 50.9 
DMMA[17] 62.5 55.3 60.3 59.2 
kNNMMDL 93.6 84.1 88.4 87.7 
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4.4 Experiments on LFW Dataset 
The LFW dataset [42] contains more than 13000 images from 5749 different individuals in 
unconstrained environments, where 1680 people have two or more than two images per person. 
We use LFW-a [43] which is a version of LFW after alignment using commercial face 
alignment software in the experiment. One can see that although face alignment has been 
conducted, the intra-class variations in this dataset are still very large compared with the face 
datasets in the controlled environments. Following the experiment setting in literatures [18] 
and [28], a subset with face images of 158 objects is selected for experiment, and each object 
has more than 10 images. We resize the size of the images to 80×80. We select face images of 
the first 50 objects to construct the gallery set and the query set, and images of the remaining 
objects are used to build the generic training set. The mean face image of each object is used to 
construct the reference sample set in the generic training set because of the absence of frontal 
images with natural expression in this dataset. Since face images in the LFW dataset are 
captured in the unconstrained environments, the type of intra-class variations in each face 
image is uncertain. However, there always exist face images with smile expression or the 
expression similar to smile in face images of each object. Therefore, we only select face 
images with smile expression or the expression similar to smile for constructing the variation 
set. 

Table 3 lists the recognition accuracies of all competeing methods. It can be seen from 
Table 3 that all methods do not achieve very high face recognition performance. That is 
because images in the LFW dataset are collected in uncontrolled environments, which makes 
face images containing rich intra-class variations and increases the difficulty for face 
recognition. As a result, the performance of face recognition deteriorate. Nevertheless, our 
proposed approach is still superior to the other comparing methods. The reasons are the 
following two aspects. On the one hand, we handle illumination by employing Weber-face 
algorithm in our approach, which can alleviate the adverse influence caused by illumination 
variations for face recognition performance. On the other hand, the generated virtual samples 
can enrich the intra-class variation information for training samples to a certain extent. LGR 
and SVDL achieve good face recognition performance as well because the learned intra-class 
variation information from other objects of the generic training set can help improving the 
robustness of SSFR. 

 

 

Table 3. Recognition accuracies (%) on the query set of LFW dataset 
(bold numbers indicate the best results). 

Method Accuracy 
SPCA+[20] 14.9 
SVD-FLDA[21] 15.5 
LGR[14] 30.4 
AGL[23] 19.2 
ESRC[26] 27.3 
CPL[13] 25.2 
SVDL[28] 28.6 
PCRC[18] 24.2 
Block LDA[19] 16.4 
DMMA[17] 17.8 
kNNMMDL 32.3 
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4.5 The Effect of Virtual Sample Generating for kNNMMDL 
In our proposed approach kNNMMDL, the aim of generating virtual samples by using the 
kNNVSG algorithm is to enrich the intra-class variation information of training samples (i.e., 
gallery samples) in the gallery set. When the kNNVSG algorithm is not used to generate 
virtual samples, the intra-class variation information of training samples in the gallery set is 
relatively simple. In the following, we verify whether the intra-class variation information 
contained in the virtual sample images can predict the intra-class variations of query samples 
and enhance the face recognition performance of the kNNMMDL approach. We conduct 
experiments in two cases, i.e., with and without using the kNNVSG algorithm in kNNMMDL 
approach, to observe the differences of the face recognition performance. Specifically, we 
separately conduct experiments on four query sets (Illumination, Expression, Disguise and 
Illumination+Disguise) of the AR dataset to observe their face recognition performance in the 
two cases mentioned above. 
 

 
 
Table 4 lists the recognition accuracies of the kNNMMDL approach with and without using 

the kNNVSG algorithm in kNNMMDL approach on the four query sets of the AR dataset. As 
shown in Table 4, generating virtual samples by using the kNNVSG algorithm can improve 
the recognition accuracies on Illumination, Expression, Disguise and Illumination Disguise 
query sets by 9.7% (= 98.3% - 88.6%), 21.8% (= 92.5% - 70.7%), 57.2% (= 95.1% - 37.9%) 
and 56.8% (= 91.6% - 34.8%) as compared with the recognition results of doing not use the 
kNNVSG algorithm in kNNMMDL approach, respectively. It indicates that generating virtual 
samples by using the kNNVSG algorithm to enrich the intra-class variation information for the 
training samples is helpful to SSFR. Similar phenomena exist on Multi-PIE and LFW datasets 
as well. 

 

4.6 The Effect of Illumination Normalization for kNNMMDL 
In our proposed approach kNNMMDL, the aim of conducting illumination normalization on 
sample images by using Weber-face algorithm is to alleviate the adverse influence caused by 
illumination variations for face recognition performance. Illumination normalization 
procedure is a relatively independent procedure in kNNMMDL approach. Hence, it can be 
removed from kNNMMDL approach when we observe whether the illumination 
normalization procedure is beneficial to alleviate the adverse influence caused by illumination 
variations for the face recognition performance. Concretely, for comparison purposes, we 
conduct experiments on four query sets (Illumination, Expression, Disguise and 
Illumination+Disguise) of the AR dataset with and without performing illumination 
normalization respectively. 
 

Table 4. Recognition accuracies (%) of kNNMMDL with and without using kNNVSG 
algorithm on four query sets of AR dataset (bold numbers indicate the best results). 

Method Illumination Expression Disguise Illumination 
+Disguise 

kNNMMDL 
(without kNNVSG) 88.6 70.7 37.9 34.8 

kNNMMDL 
(with kNNVSG) 98.3 92.5 95.1 91.6 
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Table 5 tabulates the recognition accuracies of the kNNMMDL approach on the four query 

sets of the AR dataset with and without performing illumination normalization respectively. 
From Table 5, it can be seen that the face recognition performance of kNNMMDL with 
performing illumination normalization are significantly better than those without performing 
illumination normalization, and the performance improvement of 9.2% (=98.3%-89.1%) and 
10.8% (=91.6%-80.8%) on Illumination and Illumination+Disguise query sets can be obtained 
respectively. It indicates that we can enrich the illumination variations for training samples by 
generating virtual samples to better predict illumination variations of query samples. Besides, 
conducting illumination normalization to obtain the illumination-insensitive representations 
of sample images is helpful to alleviate the adverse effect caused by illumination variations on 
face recognition performance as well. Furthermore, the experimental results on Expression 
and Disguise query sets illustrate that the illumination normalization procedure basically does 
not loss useful discriminant information used for face recognition. Similar phenomena also 
exist on Multi-PIE and LFW datasets. 

 

4.7 Parameter Analysis 
The influence of key parameters of kNNMMDL for face recognition performance is studied. 
These key parameters include the size of the local patch a b× , the size of nearest neighbor set 
of single gallery sample 0k , the size of the inter-manifold nearest neighbor set 1k  and the size 
of the intra-manifold nearest neighbor set 2k . Since each parameter could affect the face 
recognition accuracy, we should first fix the other three parameters when we test the effect of 
one parameter on the face recognition accuracy in the experiments. 

Fig. 6 illustrates how these four parameters affect the face recognition accuracy of our 
approach. Fig. 6(a), Fig. 6(b), Fig. 6(c) and Fig. 6(d) show the face recognition accuracy 
variations separately versus different local patch size, different size of nearest neighbor set of 
single gallery sample, different size of inter-manifold nearest neighbor set and different size of 
intra-manifold nearest neighbor set on AR dataset when using Illumination+Disguise as the 
query set. As shown in Fig. 6, our proposed approach has relatively stable performance for 
these four parameters a b× , 0k , 1k  and 2k . Therefore, in order to achieve good face 
recognition performance, it is relatively easy to select appropriate value for these four 
parameters. 
 
 

Table 5. Recognition accuracies (%) of kNNMMDL with and without performing illumination 
normalization on four query sets of AR dataset (bold numbers indicate the best results). 

Method Illumination Expression Disguise Illumination 
+Disguise 

kNNMMDL 
(without normalization) 89.1 92.1 94.9 80.8 

kNNMMDL 
(with normalization) 98.3 92.5 95.1 91.6 
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5. Conclusion 
In this paper, we propose a face recognition approach called k nearest neighbor virtual image 
set based multimanifold discriminant learning (kNNMMDL) to address the SSFR problem. In 
kNNMMDL approach, based on the idea that similar faces have similar intra-class variations, 
we propose k nearest neighbors based virtual sample generating (kNNVSG) algorithm to 
enrich the intra-class variation information of training samples. Aiming to use the intra-class 
variation information of virtual samples for better learning low-dimensional feature space, we 
propose image set based multimanifold discriminant learning (ISMMDL) algorithm. Besides, 
we introduce Weber-face algorithm to alleviate adverse influence caused by illumination 
variations to the face recognition performance. Experimental results on three widely used face 
datasets (i.e., AR, Multi-PIE and LFW datasets) illustrate that our proposed face recognition 
approach kNNMMDL is effective for SSFR tasks. 
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