• Title/Summary/Keyword: peroxisome proliferator-activated receptor-$\gamma2$

Search Result 229, Processing Time 0.033 seconds

Inhibitory Effects of Allium senescens L. Methanol Extracts on Reactive Oxygen Species Production and Lipid Accumulation during Differentiation in 3T3-L1 Cells (두메부추(Allium senescens L.) 메탄올 추출물의 지방세포 내 활성산소종 생성 및 지질축적 억제 효능)

  • Choi, Hye-Young;Kim, Gun-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.498-504
    • /
    • 2014
  • Allium senescens L. is perennial plant of the Liliaceae family that grows throughout Korea. In this study, we investigated the effect of Allium senescens L. methanol extracts on reactive oxygen species (ROS) production and lipid accumulation during adipogenesis. Our results indicated that 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity of Allium senescens L. methanol extracts increased in a dose-dependent manner. Allium senescens L. methanol extracts suppressed ROS production and lipid accumulation during adipogenesis. In addition, Allium senescens L. methanol extracts inhibited the mRNA expression of the pro-oxidant enzyme, such as G6PDH and lead to a reduction in the mRNA levels of the transcription factors, such as sterol regulatory element binding proteins 1c, peroxisome proliferator-activated receptor ${\gamma}$, and CCAAT/enhancer-binding proteins ${\alpha}$. These results indicate that Allium senescens L. methanol extracts inhibit adipogenesis by modulating ROS production associated with ROS-regulating genes and directly down-regulating adipogenic transcription factors.

Effects of Ethanol Extract of Sargassum horneri on Adipocyte Differentiation and Adipogenesis in 3T3-L1 Preadipocytes (괭생이모자반 에탄올 추출물이 3T3-L1 지방전구세포의 분화 및 adipogenesis에 미치는 영향)

  • Kwon, Da Hye;Choi, Yung Hyun;Kim, Byung Woo;Hwang, Hye Jin
    • Journal of Life Science
    • /
    • v.29 no.2
    • /
    • pp.209-214
    • /
    • 2019
  • Sargassum horneri (Turner) C. Agardh is a marine brown algae widely distributed in the North Pacific Ocean. It is known for its anti-inflammatory and anti-atopic effects. In this study, we determined the effects of ethanol extract of Sargassum horneri (Turner) C. Agardh (EESH) on anti-obesity activities in 3T3-L1 preadipocytes. Our results indicated that treatment with EESH decreased the differentiation of 3T3-L1 preadipocytes in a dose-dependent manner, as confirmed by a decrease in lipid droplet content observed by oil red O staining. The concentrations of cellular triglycerides were also reduced in 3T3-L1 cells after treatment with EESH. Triglyceride content was inhibited by 13%, 16%, and 23% after treatment with 250, 500, and $1,000{\mu}g/ml$ of EESH in 3T3-L1 cells, respectively. Western blotting analysis showed that EESH suppressed adipogenic transcription factor expression in a dose dependent manner. Specifically, it suppressed cytidine-cytidine-adinosine-adenosine-thymidine (CCAAT) /enhancer binding proteins $(C/EBP){\alpha}$, $C/EBP{\beta}$ and peroxisome proliferator-activated receptor $(PPAR){\gamma}$. This indicated that EESH could control the expression of adipogenic transcription factors and inhibit the differentiation of adipocytes. Taken together, these findings demonstrated that EESH showed anti-obesity effects and could have potential uses in the field of nutraceuticals.

Immunostimulatory and Anti-Obesity Activity of Lonicera insularis Nakai Extracts in Mouse Macrophages RAW264.7 Cells and Mouse Adipocytes 3T3-L1 Cells (섬괴불나무(Lonicera insularis Nakai) 추출물의 면역자극 및 항비만 활성)

  • Yu, Ju Hyeong;Yeo, Joo Ho;Choi, Min Yeong;Lee, Jae Won;Geum, Na Gyeong;An, Mi-Yun;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.35 no.4
    • /
    • pp.417-427
    • /
    • 2022
  • In this study, we investigated in vitro immuno-stimulatory and anti-obesity activity of fruit (LIF), leaves (LIL) and stems (LIS) from Lonicera insularis Nakai in mouse macrophages RAW264.7 cells and mouse pre-adipocytes 3T3-L1 cells. LIF, LIL and LIS increased the production of immunostimulatory factors such as nitric oxide (NO), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α) and activated phagocytosis in RAW264.7 cells. Inhibition of toll-like receptor 2/4 (TLR2/4) partly blocked LIF, LIL and LIS mediated production of immunostimulatory factors. In addition, inhibition of mitogen-activated protein kinases (MAPK) signaling attenuated the production of immunostimulatory factors induced by LIF, LIL and LIS. Based on these results of this study, LIF, LIL and LIS is thought to activate macrophages the production of immunostimulatory factors and phagocytosis through toll-like receptor 2/4 (TLR2/4) and MAPKs signaling pathway. In anti-obesity study, LIF reduced the lipid accumulation in 3T3-L1 cells. LIF increased the protein phosphorylation expressions such as AMP-activated protein kinase (AMPK), hormone sensitive lipase (HSL), adipose triglyceride lipase (ATGL) related to the lipolysis of the adipocytes. In addition, LIF increased the expression of proteins involved in energy metabolism and brown adipose tissues differentiation such as peroxisome proliferator-activated receptor gamma coativator 1α (PGC-1α) and PR domain-containing16 (PRDM16). These results suggest that LIF is involved in lipid accumulation inhibition through expressing the proteins such as lipolysis and differentiation of white adipocytes to brown adipocytes.

Antiadipogenic Activity of Solvent-partitioned Fractions from Limonium tetragonum in 3T3-L1 Preadipocytes (갯질경이 용매분획물의 3T3-L1전지방세포에서의 지방생성억제 효과)

  • Kwon, Myeong Sook;Kim, Jung-Ae;Oh, Jung Hwan;Karadeniz, Fatih;Lee, Jung Im;Seo, Youngwan;Kong, Chang-Suk
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.60-68
    • /
    • 2019
  • Limonium tetragonum, an edible halophyte that grows on salt marshes in Korea, is thought to possess various health benefits (e.g., antioxidant, antitumor, and hepatoprotective). In the present study, different solvent partitioned subfractions, water ($H_2O$), buthanol (n-BuOH), 85% aqueous methanol (85% aq. MeOH), and hexane (n-hexane), from crude extract of L. tetragonum were tested for their ability to prevent adipogenesis in differentiating 3T3-L1 preadipocytes. The treatment of differentiating 3T3-L1 preadipocytes with L. tetragonum subfractions (LTFs) resulted in suppressed adipogenesis and reduced expression of adipogenesis-related transcription factors such as peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$), CCAATT/enhancer-binding protein alpha ($C/EBP{\alpha}$), and sterol regulatory element-binding protein 1c (SREBP-1c) at both mRNA and protein levels. In addition, the LTF treatment notably decreased the levels of phosphorylated p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) of the mitogen-activated protein kinase (MAPK) pathway in association with $PPAR{\gamma}$-linked adipogenesis. Among all the tested LTFs, $H_2O$ and n-hexane were the most effective in lowering lipid accumulation and regulating the adipocyte differentiation via $PPAR{\gamma}$ pathway. Taken together, the results indicated that the $H_2O$ and n-hexane LTFs contain bioactive compounds that may exhibit significant antiadipogenesis activity by downregulation of the $PPAR{\gamma}$ pathway and inactivation of the MAPK signal pathway in 3T3-L1 preadipocytes.

Effects of Extracts of Five Species of Korean Native Forest Plants on Lipid Accumulation and Reactive Oxygen Species Production during Differentiation of 3T3-L1 Preadipocytes (3T3-L1 세포분화 중 지방축적 및 활성산소종 생성에 대한 국내 산림자원 5종 추출물의 효과)

  • Choi, Sun-Il;Lee, Jong Seok;Lee, Sarah;Lee, Hye Jin;Yeo, Joohong;Cho, Bong-Yeon;Lee, Jin-Ha;Kim, Jae-Min;Jung, Tae-Dong;Choi, Seung-Hyun;Kim, Jong-Yea;Kang, Suk-Nam;Lee, Ok-Hwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.4
    • /
    • pp.523-528
    • /
    • 2017
  • This study investigate the effects of extracts of five species of Korean native forest plants on lipid accumulation and reactive oxygen species (ROS) production during the differentiation of 3T3-L1 cells. Our results show that Korean native forest plants extracts significantly reduced lipid accumulation and ROS production during adipogenesis in 3T3-L1 cells. Especially, Rubus coreanus Miq. was most effective in the inhibition of lipid accumulation and ROS production at a concentration of $100{\mu}g/mL$. Moreover, Rubus coreanus Miq. extracts significantly inhibited adipocyte differentiation, which is dependent on down-regulation of peroxisome proliferator-activated receptor gamma, CCAAT/enhancer-binding protein alpha, and adipocyte-specific fatty acid binding protein, a key adipogenic transcription factor. Therefore, these results suggest that Rubus coreanus Miq. might be a valuable source of bioactive compounds with anti-adipogenic activity.

Allium hookeri Extract Improves Type 2 Diabetes Mellitus in C57BL/KSJ Db/db Obese Mouse via Regulation of Hepatic Lipogenesis and Glucose Metabolism (삼채 추출물의 인슐린 저항성 개선 효과 및 기전 탐색)

  • Kim, Ji-Soo;Heo, Jin-Sun;Choi, Jong-Won;Kim, Gun-Do;Sohn, Kie-Ho
    • Journal of Life Science
    • /
    • v.25 no.10
    • /
    • pp.1081-1090
    • /
    • 2015
  • Diabetes has been one of major health risks in industrialized countries. Allium hookeri is a wild herb distributed in India and Myanmar. The root of the plant has been used as food and medicine in Southeast Asia. We investigated Allium hookeri extract improves type 2 diabetes mellitus in C57BL/KSJ db/db obese mouse. C57BL/KSJ db/db obese mouse arise out of Type 2 diabetes and we treated Allium hookeri methanol extract 400 mg/kg (AH 400), 800 mg/kg (AH 800), positive control group (thiazolidinedine;TZDs) were administered orally for 8weeks. AH treated group normalized lipid enzyme system (triglyceride, total cholesterol, HDL-cholesterol and LDL-cholesterol) and serum glucose, HbA1c and plasma insulin level. AH treated group recovered β-cell damage by hyperglycemia and fatty liver disease. AH treated group significantly up regulated expression of Peroxisome proliferator-activated receptor gamma (PPAR-γ), pyruvate dehydrogenase kinase4 (PDK4), Sterol regulatory element-binding protein 1c (SREBP 1) and fork head box O1 (FOX 01) proteins in C57BL/KSJ db/db obese mouse liver. And we found that AH treated group decreased hepatic malondialdehyde formation in C57BL/KSJ db/db obese mouse liver. These results indicate that Allium hookeri methanol extract might be a potential anti-diabetic agent and could be useful in the treatment of type 2 diabetes mellitus.

Transcriptome Analyses for the Anti-Adipogenic Mechanism of an Herbal Composition (생약복합물의 지방세포형성억제 기전규명을 위한 전사체 분석)

  • Lee, Hae-Yong;Kang, Ryun-Hwa;Bae, Sung-Min;Chae, Soo-Ahn;Lee, Jung-Ju;Oh, Dong-Jin;Park, Suk-Won;Cho, Soo-Hyun;Shim, Yae-Jie;Yoon, Yoo-Sik
    • Journal of Life Science
    • /
    • v.20 no.7
    • /
    • pp.1054-1065
    • /
    • 2010
  • SH21B is a natural composition composed of seven herbs: Scutellaria baicalensis Georgi, Prunus armeniaca Maxim, Ephedra sinica Stapf, Acorus gramineus Soland, Typha orientalis Presl, Polygala tenuifolia Willd and Nelumbo nucifera Gaertner (Ratio 3:3:3:3:3:2:2). In our previous study, we reported that SH21B inhibited adipogenesis and fat accumulation in 3T3-L1 cells through modulation of various regulators in the adipogenesis pathway. The aim of this study was to analyze the transcriptome profiles for the anti-adipogenic effects of SH21B in 3T3-L1 cells. Total RNAs from SH21B-treated 3T3-L1 cells were reverse-transcribed into cDNAs and hybridized to Affymetrix Mouse Gene 1.0 ST array. From microarray analyses, we identified 2,568 genes of which expressions were changed more than two-fold by SH21B, and the clustering analyses of these genes resulted in 9 clusters. Three clusters among the 9 showed down-regulation by SH21B (cluster 4, cluster 6 and cluster 9), and two clusters showed up-regulation by SH21B (cluster 7 and cluster 8) during the adipogenesis of 3T3-L1 cells. It was found that many genes related to cell proliferation and adipogenesis were included in these clusters. Clusters 4, 6 and 9 included genes which were related with adipogenesis induction and cell cycle arrest. Clusters 7 and 8 included genes related to cell proliferation as well as adipogenesis inhibition. These results suggest that the mechanisms of the anti-adipogenic effects of SH21B may be the modulation of genes involved in cell proliferation and adipogenesis.

Antioxidant and Anti-Adipogenic Activities of Bread Containing Corn Silk, Job's Tears, Lentinus edodes, and Apple Peel in 3T3-L1 Preadipocytes (옥수수수염, 율무, 표고버섯 그리고 사과껍질을 함유한 빵의 항산화 및 3T3-L1 지방 전구세포 분화 억제 활성)

  • Lee, Chang Won;Park, Yong Il;Kim, Soo-Hyun;Lim, Heekyung;Chung, Mi Ja
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.5
    • /
    • pp.651-663
    • /
    • 2016
  • Corn silk, Job's tears, Lentinus edodes, and apple peel 70% ethanol extracts (CS, JT, LE, and AP) were studied for their antioxidant activities. CS among all extracts showed the highest antioxidant activities based on total polyphenol and flavonoid contents, 2,2-diphenyl-${\beta}$-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) radical scavenging activity, and reducing power. Adipocyte differentiation was investigated by Oil Red O staining assay using CS, JT, LE, AP, and extract of developed bread containing corn silk, Job's tears, Lentinus edodes, and apple peel (DB) treated to 3T3-L1 adipocytes. DB1 and DB2 showed anti-adipogenic and antioxidant effects. Triglyceride (TG) accumulation in 3T3-L1 cells was measured, and among the samples tested (CS, JT, LE, and AP), CS was found to have the highest inhibitory activity against TG accumulation of differentiated 3T3-L1 adipocytes and regulated factors associated with adipogenesis. CS suppressed lipid droplet formation and adipocyte differentiation in 3T3-L1 cells in a dose-dependent manner. We examined the effects of CS on the levels of CCAAT-enhancer-binding protein ${\beta}(C/EBP{\beta})$, peroxisome proliferator activated receptor ${\gamma}(PPAR{\gamma})$, and adipocyte-specific lipid binding protein (aP2) mRNA as well as protein levels in 3T3-L1 cells treated with CS at various concentrations (0, 10, 50, and $100{\mu}g/mL$) during adipocyte differentiation and treatment with CS in 3T3-L1 adipocytes down-regulated expression of $PPAR{\gamma}$ and aP2 mRNA. CS also significantly inhibited up-regulation of $C/EBP{\beta}$, $PPAR{\gamma}$, and aP2 proteins during adipocyte differentiation. These data indicate that DBs have anti-adipogenic activity induced by CS in 3T3-L1 preadipocytes, and CS exerts anti-adipogenic activity by inhibiting expression of $C/EBP{\beta}$, $PPAR{\gamma}$, and aP2 signaling pathway in 3T3-L1 adipocytes. JT, LE, and AP had no inhibitory effects on differentiation of 3T3-L1 preadipocytes but displayed strong antioxidant effects. These results suggest that the developed bread may be a health beneficial food that can prevent or treat obesity and diseases induced by oxidative stress.

TM-25659-Induced Activation of FGF21 Level Decreases Insulin Resistance and Inflammation in Skeletal Muscle via GCN2 Pathways

  • Jung, Jong Gab;Yi, Sang-A;Choi, Sung-E;Kang, Yup;Kim, Tae Ho;Jeon, Ja Young;Bae, Myung Ae;Ahn, Jin Hee;Jeong, Hana;Hwang, Eun Sook;Lee, Kwan-Woo
    • Molecules and Cells
    • /
    • v.38 no.12
    • /
    • pp.1037-1043
    • /
    • 2015
  • The TAZ activator 2-butyl-5-methyl-6-(pyridine-3-yl)-3-[2'-(1H-tetrazole-5-yl)-biphenyl-4-ylmethyl]-3H-imidazo[4,5-b]pyridine] (TM-25659) inhibits adipocyte differentiation by interacting with peroxisome proliferator-activated receptor gamma. 1 TM-25659 was previously shown to decrease weight gain in a high fat (HF) diet-induced obesity (DIO) mouse model. However, the fundamental mechanisms underlying the effects of TM-25659 remain unknown. Therefore, we investigated the effects of TM-25659 on skeletal muscle functions in C2 myotubes and C57BL/6J mice. We studied the molecular mechanisms underlying the contribution of TM-25659 to palmitate (PA)-induced insulin resistance in C2 myotubes. TM-25659 improved PA-induced insulin resistance and inflammation in C2 myotubes. In addition, TM-25659 increased FGF21 mRNA expression, protein levels, and FGF21 secretion in C2 myotubes via activation of GCN2 pathways (GCN2-$phosphoelF2{\alpha}$-ATF4 and FGF21). This beneficial effect of TM-25659 was diminished by FGF21 siRNA. C57BL/6J mice were fed a HF diet for 30 weeks. The HF-diet group was randomly divided into two groups for the next 14 days: the HF-diet and HF-diet + TM-25659 groups. The HF diet + TM-25659-treated mice showed improvements in their fasting blood glucose levels, insulin sensitivity, insulin-stimulated Akt phosphorylation, and inflammation, but neither body weight nor food intake was affected. The HF diet + TM-25659-treated mice also exhibited increased expression of both FGF21 mRNA and protein. These data indicate that TM-25659 may be beneficial for treating insulin resistance by inducing FGF21 in models of PA-induced insulin resistance and HF diet-induced insulin resistance.

Histone H3 Lysine Methylation in Adipogenesis (Adipogenesis에서 히스톤 H3 lysine methylation)

  • Jang, Younghoon
    • Journal of Life Science
    • /
    • v.30 no.8
    • /
    • pp.713-721
    • /
    • 2020
  • Adipogenesis as a model system is needed to understand the molecular mechanisms of human adipocyte biology and the pathogenesis of obesity, diabetes, and other metabolic syndromes. Many relevant studies have been conducted with a focus on gene expression regulation and intracellular signaling relating to Peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα), which are master adipogenic transcription factors. However, epigenome regulation of adipogenesis by epigenomic modifiers or histone mutations is not fully understood. Histone methylation is one of the major epigenetic modifications on gene expression in mammals, and histone H3 lysine methylation (H3Kme) in particular implicates cell differentiation during various tissue and organ development. During adipogenesis, cell type-specific enhancers are marked by histone H3K4me1 with the active enhancer mark H3K27ac. Mixed-lineage leukemia 4 (MLL4) is a major H3K4 mono-methyltransferase on the adipogenic enhancers of PPARγ and C/EBPα loci. Thus, MLL4 is an important epigenomic modifier for adipogenesis. The repressive mark H3K27me3 is mediated by the enzymatic subunit Enhancer zeste homolog 2 (EZH2) of the polycomb repressive complex 2. EZH2-mediated H3K27 tri-methylation on the Wnt gene increases adipogenesis because WNT signaling is a negative regulator of adipogenesis. This review summarizes current knowledge about the epigenomic regulation of adipogenesis by histone H3 lysine methylation which fundamentally regulates gene expression.