• Title/Summary/Keyword: perovskite materials

Search Result 521, Processing Time 0.027 seconds

Organic-Inorganic Perovskite for Highly Efficient Tandem Solar Cells (고효율 적층형 태양전지를 위한 유무기 페로브스카이트)

  • Park, Ik Jae;Kim, Dong Hoe
    • Ceramist
    • /
    • v.22 no.2
    • /
    • pp.146-169
    • /
    • 2019
  • To overcome the theoretical efficiency of single-junction solar cells (> 30 %), tandem solar cells (or multi-junction solar cells) is considered as a strong nominee because of their excellent light utilization. Organic-inorganic halide perovskite has been regarded as a promising candidate material for next-generation tandem solar cell due to not only their excellent optoelectronic properties but also their bandgap-tune-ability and low-temperature process-possibility. As a result, they have been adopted either as a wide-bandgap top cell combined with narrow-bandgap silicon or CuInxGa(1-x)Se2 bottom cells or for all-perovskite tandem solar cells using narrow- and wide-bandgap perovskites. To successfully transition perovskite materials from for single junction to tandem, substantial efforts need to focus on fabricating the high quality wide- and narrow-bandgap perovskite materials and semi-transparent electrode/recombination layer. In this paper, we present an overview of the current research and our outlook regarding perovskite-based tandem solar technology. Several key challenges discussed are: 1) a wide-bandgap perovskite for top-cell in multi-junction tandem solar cells; 2) a narrow-bandgap perovskite for bottom-cell in all-perovskite tandem solar cells, and 3) suitable semi-transparent conducting layer for efficient electrode or recombination layer in tandem solar cells.

Performances and Electrical Properties of Vertically Aligned Nanorod Perovskite Solar Cell

  • Kwon, Hyeok-Chan;Kim, Areum;Lee, Hongseuk;Lee, Eunsong;Ma, Sunihl;Lee, Yung;Moon, Jooho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.429-429
    • /
    • 2016
  • Organolead halide perovskite have attracted much attention over the past three years as the third generation photovoltaic due to simple fabrication process via solution process and their great photovoltaic properties. Many structures such as mesoporous scaffold, planar heterojunction or 1-D TiO2 or ZnO nanorod array structures have been studied to enhance performances. And the photovoltaic performances and carrier transport properties were studied depending on the cell structures and shape of perovskite film. For example, the perovskite cell based on TiO2/ZnO nanorod electron transport materials showed higher electron mobility than the mesoporous structured semiconductor layer due to 1-D direct pathway for electron transport. However, the reason for enhanced performance was not fully understood whether either the shape of perovskite or the structure of TiO2/ZnO nanorod scaffold play a dominant role. In this regard, for a clear understanding of the shape/structure of perovskite layer, we applied anodized aluminum oxide material which is good candidate as the inactive scaffold that does not influence the charge transport. We fabricated vertical one dimensional (1-D) nanostructured methylammonium lead mixed halide perovskite (CH3NH3PbI3-xClx) solar cell by infiltrating perovskite in the pore of anodized aluminum oxide (AAO). AAO template, one of the common nanostructured materials with one dimensional pore and controllable pore diameters, was successfully fabricated by anodizing and widening of the thermally evaporated Al film on the compact TiO2 layer. Using AAO as a scaffold for perovskite, we obtained 1-D shaped perovskite absorber, and over 15% photo conversion efficiency was obtained. I-V measurement, photoluminescence, impedance, and time-limited current collection were performed to determine vertically arrayed 1-D perovskite solar cells shaped in comparison with planar heterojunction and mesoporous alumina structured solar cells. Our findings lead to reveal the influence of the shape of perovskite layer on photoelectrical properties.

  • PDF

Recent Research Progress on Eco-Friendly Perovskite Solar Cells (친환경 페로브스카이트 태양전지 최신 기술 동향)

  • You, Hyung Ryul;Choi, Jongmin
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.3
    • /
    • pp.104-111
    • /
    • 2019
  • Metal halide perovskite materials are considered as promising semiconducting materials for next-generation solar cells due to their unique electrical and optical properties. Intensive progress in perovskite solar cell yielded a certified power conversion efficiency over 24%. However, most of highly efficient perovskite solar cells required Pb-based perovskite materials, which is a critical obstacle for their commercialization, and development of Pb-free perovskite materials is one of recent urgent issues in this field. In this paper, we will introduce recent research progress on Pb-free perovskite solar cells.

Fabrication High Covered and Uniform Perovskite Absorbing Layer With Alkali Metal Halide for Planar Hetero-junction Perovskite Solar Cells

  • Lee, Hongseuk;Kim, Areum;Kwon, Hyeok-chan;Moon, Jooho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.427-427
    • /
    • 2016
  • Organic-inorganic hybrid perovskite have attracted significant attention as a new revolutionary light absorber for photovoltaic device due to its remarkable characteristics such as long charge diffusion lengths (100-1000nm), low recombination rate, and high extinction coefficient. Recently, power conversion efficiency of perovskite solar cell is above 20% that is approached to crystalline silicon solar cells. Planar heterojunction perovskite solar cells have simple device structure and can be fabricated low temperature process due to absence of mesoporous scaffold that should be annealed over 500 oC. However, in the planar structure, controlling perovskite film qualities such as crystallinity and coverage is important for high performances. Those controlling methods in one-step deposition have been reported such as adding additive, solvent-engineering, using anti-solvent, for pin-hole free perovskite layer to reduce shunting paths connecting between electron transport layer and hole transport layer. Here, we studied the effect of alkali metal halide to control the fabrication process of perovskite film. During the morphology determination step, alkali metal halides can affect film morphologies by intercalating with PbI2 layer and reducing $CH3NH3PbI3{\cdot}DMF$ intermediate phase resulting in needle shape morphology. As types of alkali metal ions, the diverse grain sizes of film were observed due to different crystallization rate depending on the size of alkali metal ions. The pin-hole free perovskite film was obtained with this method, and the resulting perovskite solar cells showed higher performance as > 10% of power conversion efficiency in large size perovskite solar cell as $5{\times}5cm$. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma optical emission spectrometry (ICP-OES) are analyzed to prove the mechanism of perovskite film formation with alkali metal halides.

  • PDF

페로브스카이트 태양전지용 홀 전도체 개발과 비납계 페로브스카이트 연구 동향

  • Song, Myeong-Gwan
    • Ceramist
    • /
    • v.21 no.1
    • /
    • pp.98-111
    • /
    • 2018
  • The lead-based perovskite (CH3NH3PbI3) material has a high molar coefficient, high crystallinity at low temperature, and long range of balanced electron-hole transport length. In addition, PCE of perovskite solar cells (PSCs) has been dramatically improved by over 22% by amending the electronic quality of perovskite and by using state-of-the-art hole transporting materials (HTMs) such as tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) due to enhanced charge transport toward the electrode via properly aligned energy levels with respect to the perovskite. Replacing the spiro-OMeTAD with new HTMs with the desired properties of appropriate energy levels, high hole mobility in its pristine form, low cost, and easy processable materials is necessary for attaining highly efficient and stable PSCs, which are anticipated to be truly compatible for practical application. Furthermore, Recently Pb-free perovskite materials much attention as an alternative light-harvesting active layer material instead of lead based perovskite in photovoltaic cells. In this work, we demonstrate a Pb-free perovskite material for the light harvesting and emitter as optoelectronic devices.

Degradation and Stability of Organic-Inorganic Perovskite Solar Cells (유 무기 페로브스카이트 태양전지의 열화와 안정성)

  • Cho, Kyungjin;Kim, Seongtak;Bae, Soohyun;Chung, Taewon;Lee, Sang-won;Lee, Kyung Dong;Lee, Seunghun;Kwon, Guhan;Ahn, Seh-Won;Lee, Heon-Min;Ko, Min Jae;Kang, Yoonmook;Lee, Hae-seok;Kim, Donghwan
    • Current Photovoltaic Research
    • /
    • v.4 no.2
    • /
    • pp.68-79
    • /
    • 2016
  • The power conversion efficiency of perovskite solar cells has remarkably increased from 3.81% to 22.1% in the past 6 years. Perovskite solar cells, which are based on the perovskite crystal structure, are fabricated using organic-inorganic hybrid materials. The advantages of these solar cells are their low cost and simple fabrication procedure. Also, they have a band gap of about 1.6 eV and effectively absorb light in the visible region. For the commercialization of perovskite solar cells in the field of photovoltaics, the issue of their long term stability cannot be overlooked. Although the development of perovskite solar cells is unprecedented, their main drawback is the degradation of the perovskite structure by moisture. This degradation is accelerated by exposure to UV light, temperature, and external bias. This paper reviews the aforesaid reasons for perovskite solar cell degradation. We also discuss the research directions that can lead to the development of perovskite solar cells with high stability.

Low-Temperature Processable Charge Transporting Materials for the Flexible Perovskite Solar Cells

  • Jo, Jea Woong;Yoo, Yongseok;Jeong, Taehee;Ahn, SeJin;Ko, Min Jae
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.657-668
    • /
    • 2018
  • Organic-inorganic hybrid lead halide perovskites have been extensively investigated for various optoelectronic applications. Particularly, owing to their ability to form highly crystalline and homogeneous films utilizing low-temperature solution processes (< $150^{\circ}C$), perovskites have become promising photoactive materials for realizing high-performance flexible solar cells. However, the current use of mesoporous $TiO_2$ scaff olds, which require high-temperature sintering processes (> $400^{\circ}C$), has limited the fabrication of perovskite solar cells on flexible substrates. Therefore, the development of a low-temperature processable charge-transporting layer has emerged as an urgent task for achieving flexible perovskite solar cells. This review summarizes the recent progress in low-temperature processable electron- and hole-transporting layer materials, which contribute to improved device performance in flexible perovskite solar cells.

Exfoliation of Dion-Jacobson Layered Perovskite into Macromolecular Nanoplatelet

  • Lee, Won-Jae;Yeo, Hyun Jung;Kim, Do-Yun;Paek, Seung-Min;Kim, Young-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2041-2043
    • /
    • 2013
  • A layered perovskite of Dion-Jacobson phase, $RbLaTa_2O_7$, was successfully exfoliated into colloidal suspension via successive ion-exchange and intercalation reaction. The pristine perovskite $RbLaTa_2O_7$ was synthesized by conventional solid-state reaction, and then, it was ion-exchanged with hydrochloric acid to obtain a protonic form of perovskite. The resulting proton-exchanged perovskite was reacted with ethylamine to increase interlayer spaces for further intercalation reaction. Finally, the ethylamine-intercalated form was exfoliated into nanosheets via an intercalation of bulky organic cations (tetrabutylammonium). According to X-ray diffraction (XRD) analysis, the TBA-intercalated form showed remarkably increased interlayer spacing (${\Delta}d$ = 1.67 nm) in comparison with that of the pristine material. Transmission electron microscopic image of exfoliated perovskite clearly revealed that the present exfoliated perovskite were composed of very thin layers. This exfoliated perovskite nanosheets could be applicable as building blocks for fabricating functional nanocomposites.

Uniform PMMA-CH3NH3PbBr3 Nanoparticle Composite Film for Optoelectronic Application

  • Kirakosyan, Artavazd;Yun, Seokjin;Choi, Jihoon
    • Korean Journal of Materials Research
    • /
    • v.27 no.6
    • /
    • pp.307-311
    • /
    • 2017
  • Organometal halide perovskite materials, due to the tunability of their electronic and optical properties by control of composition and structure, have taken a position of significant importance in optoelectronic applications such as photovoltaic and lighting devices. Despite numerous studies on the structure - property relationship, however, practical application of these materials in electronic and optical devices is still limited by their processability during fabrication. Achieving nano-sized perovskite particles embedded in a polymer matrix with high loading density and outstanding photoluminescence performance is challenging. Here, we demonstrate that the careful control of nanoparticle formation and growth in the presence of poly(methyl methacrylate) results in perovskite nanoparticle - polymer nanocomposites with very good dispersion and photoluminescence. Furthermore, this approach is found to prevent further growth of perovskite nanoparticles, and thus results in a more uniform film, which enables fabrication using the perovskite nanoparticles.

Effects of Chlorine Contents on Perovskite Solar Cell Structure Formed on CdS Electron Transport Layer Probed by Rutherford Backscattering

  • Sheikh, Md. Abdul Kuddus;Abdur, Rahim;Singh, Son;Kim, Jae-Hun;Min, Kyeong-Sik;Kim, Jiyoung;Lee, Jaegab
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.700-711
    • /
    • 2018
  • CdS synthesized by the chemical bath method at $70^{\circ}C$, has been used as an electron transport layer in the planar structure of the perovskite solar cells. A two-step spin process produced a mixed halide perovskite of $CH_3NH_3PbI_{3-x}Cl_x$ and a mixture of $PbCl_2$ and $PbI_2$ was deposited on CdS, followed by a sub-sequential reaction with MAI ($CH_3NH_3I$). The added $PbCl_2$ to $PbI_2$ in the first spin-step affected the structure, orientation, and shape of lead halides, which varied depending on the content of Cl. A small amount of Cl enhanced the surface morphology and the preferred orientation of $PbI_2$, which led to large and uniform grains of perovskite thin films. In contrast, the high content of Cl produces a new phase PbICl in addition to $PbI_2$, which leads to the small and highly uniform grains of perovskites. An improved surface coverage of perovskite films with the large and uniform grains maximized the performance of perovskite solar cells at 0.1 molar ratio of $PbCl_2$ to $PbI_2$. The depth profiling of elements in both lead halide films and mixed halide perovskite films were measured by Rutherford backscattering spectroscopy, revealing the distribution of chlorine along with the thickness, and providing the basis for the mechanism for enhanced preferred orientation of lead halide and the microstructure of perovskites.