페로브스카이트 태양전지용 홀 전도체 개발과 비납계 페로브스카이트 연구 동향

  • Published : 2018.03.31

Abstract

The lead-based perovskite (CH3NH3PbI3) material has a high molar coefficient, high crystallinity at low temperature, and long range of balanced electron-hole transport length. In addition, PCE of perovskite solar cells (PSCs) has been dramatically improved by over 22% by amending the electronic quality of perovskite and by using state-of-the-art hole transporting materials (HTMs) such as tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) due to enhanced charge transport toward the electrode via properly aligned energy levels with respect to the perovskite. Replacing the spiro-OMeTAD with new HTMs with the desired properties of appropriate energy levels, high hole mobility in its pristine form, low cost, and easy processable materials is necessary for attaining highly efficient and stable PSCs, which are anticipated to be truly compatible for practical application. Furthermore, Recently Pb-free perovskite materials much attention as an alternative light-harvesting active layer material instead of lead based perovskite in photovoltaic cells. In this work, we demonstrate a Pb-free perovskite material for the light harvesting and emitter as optoelectronic devices.

Keywords

References

  1. N.-G. Park, "Perovskite solar cells:an emerging photovoltaic technology", Mater. Today, 18, 65-72 (2015). https://doi.org/10.1016/j.mattod.2014.07.007
  2. Q. Chen, N. De Marco, Y. Yang, T.-B, C.-C. Chen, H. Zhao, Z. Hong, H. Zhou and Y. Yang, "Under the spotlight: The organic-inorganic hybrid halide perovskite for optoelectronic applications", Nano Today, 10, 355-396 (2015). https://doi.org/10.1016/j.nantod.2015.04.009
  3. M. Helen, "Crystal structure of barium titanate", Nature, 155, 484-485 (1945).
  4. B. Wul, "Barium Titanate: a New Ferro-Electric" Nature, 157, 808-809 (1946).
  5. R. Cohen, "Origin of ferroelectricity in perovskite oxides", Nature, 358, 136-138 (1992). https://doi.org/10.1038/358136a0
  6. C. N. R. Rao, P. Ganguly, A. K. Raychaudhuri, R. A. Mohan Ram and K. Sreedhar, "Identification of the phase responsible for high-temperature superconductivity in Y-Ba-Cu oxides", Nature, 326, 856-857 (1987). https://doi.org/10.1038/326856a0
  7. A. Schilling, M. Cantoni, J. D. Guo and H. R. Ott, " Superconductivity above 130 K in the Hg-Ba-Ca-Cu-O system" Nature, 363, 56-58 (1993). https://doi.org/10.1038/363056a0
  8. D. Weber, "$CH_3NH_3PbX_3$, ein Pb(II)-System mit kubischer Perowskitstruktur" Z. Naturforsch., 33b, 1443-1445 (1978).
  9. D. Weber, "$CH_3NH_3SnBrxl_{3-x}$ (x=0-3), ein Sn(II)-System mit kubischer Perowskitstruktur" Z. Naturforsch. 33b, 862-865 (1978)
  10. A. Kojima, K. Teshima, Y. Shirai and T.Miyasaka, "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells", J. Am. Chem. Soc., 131, 6050-6051 (2009). https://doi.org/10.1021/ja809598r
  11. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel and N.-G. Park, "Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%", Sci. Rep., 2, 591-591-7 (2012). https://doi.org/10.1038/srep00591
  12. W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo and S. I. Seok," High-performance photovoltaic perovskite layers fabricated through intramolecular exchange" Science, 348, 1234-1237 (2015). https://doi.org/10.1126/science.aaa9272
  13. H. S. Jung and N.-G. Park, "Perovskite solar cells: From Materials to Devices" Small, 11, 10-25 (2015). https://doi.org/10.1002/smll.201402767
  14. Yu and L. Sun, "Recent Progress on Hole-Transporting Materials for Emerging Organometal Halide Perovskite Solar Cells", Adv. Energy Mater., 5, 1500213 (2015). https://doi.org/10.1002/aenm.201500213
  15. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, "Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites", Science, 338, 643-647 (2012). https://doi.org/10.1126/science.1228604
  16. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal and S. I. Seok, "Chemical Management for Colorful, Efficient, and Stable Inorganic-Organic Hybrid Nanostructured Solar Cells", Nano Lett. 13, 1764-1769 (2013). https://doi.org/10.1021/nl400349b
  17. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. Gratzel, "Sequential deposition as a route to high-performance perovskite-sensitized solar cells" Nature, 499, 316-319 (2013). https://doi.org/10.1038/nature12340
  18. M. Liu, M. B. Johnston and H. J. Snaith, "Efficient planar heterojunction perovskite solar cells by vapour deposition", Nature, 501, 395-398 (2013). https://doi.org/10.1038/nature12509
  19. Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li and Y. Yang, " Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process" J. Am. Chem. Soc., 136, 622-625 (2014). https://doi.org/10.1021/ja411509g
  20. D. Liu and T. L. Kelly, " Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques" Nature Photon., 8, 133-138 (2014). https://doi.org/10.1038/nphoton.2013.342
  21. N. J. Jeon, H. G. Lee, Y. C. Kim, J. Seo, J. H. Noh, J. Lee and S. I. Seok, " o-Methoxy Substituents in Spiro-OMeTAD for Efficient Inorganic-Organic Hybrid Perovskite Solar Cells" J. Am. Chem. Soc., 136, 7837-7840 (2014). https://doi.org/10.1021/ja502824c
  22. J. Burschka, A. Dualeh, F. Kessler, E. Baranoff, N. L. Cevey-Ha, C. Y. Yi, M. K. Nazeeruddin and M. Gratzel, "Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-Type Dopant for Organic Semiconductors and Its Application in Highly Efficient Solid-State Dye-Sensitized Solar Cells" J. Am. Chem. Soc., 133, 18042-18045 (2011). https://doi.org/10.1021/ja207367t
  23. T. Leijtens, J. Lim, J. Teuscher, T. Park and H. J. Snaith, "Charge Density Dependent Mobility of Organic Hole-Transporters and Mesoporous TiO2 Determined by Transient Mobility Spectroscopy: Implications to Dye-Sensitized and Organic Solar Cells", Adv. Mater., 25, 3227-3233 (2013). https://doi.org/10.1002/adma.201300947
  24. A. Abate, T. Leijtens, S. Pathak, J. Teuscher, R. Avolio, M. E. Errico, J. Kirkpatrik, J. M. Ball, P. Docampo, I. McPherson and H. J. Snaith, " Lithium salts as ''redox active'' p-type dopants for organic semiconductors and their impact in solid-state dyesensitized solar cells" Phys. Chem. Chem. Phys., 15, 2572-2579 (2013). https://doi.org/10.1039/c2cp44397j
  25. H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu and Y. Yang, "Interface engineering of highly efficient perovskite solar cells", Science, 345, 542-546 (2014). https://doi.org/10.1126/science.1254050
  26. T. A. Berhe, W.-N. Su, C.-H. Chen, C.-J. Pan, J.-H. Cheng, H.-M. Chen, M.-C. Tsai, L.-Y. Chen, A. A. Dubale and B.-J. Hwang, "Organometal halide perovskite solar cells: degradation and stability" Energy Environ. Sci., 9, 323-356 (2016). https://doi.org/10.1039/C5EE02733K
  27. P. Ganesan, K. Fu, P. Gao, I. Raabe, K. Schenk, R. Scopelliti, J. Luo, L. H. Wong, M. Gratzel and M. K. Nazeeruddin, " A simple spiro-type hole transporting material for efficient perovskite solar cells", Energy Environ. Sci., 8, 1986-1991 (2015). https://doi.org/10.1039/C4EE03773A
  28. Y. Liu, Q. Chen, H.-S. Duan H. Zhou, Y. Yang, H. Chen, S. Luo, T.-B. Song, L. Dou, Z. Hong and Y. Yang, "A dopant-free organic hole transport material for efficient planar heterojunction perovskite solar cells", J. Mater. Chem. A, 3, 11940-11947 (2015). https://doi.org/10.1039/C5TA02502H
  29. N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu and S. I. Seok, "Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells", Nature Mater., 13, 897-903 (2014). https://doi.org/10.1038/nmat4014
  30. J.-Y. Jeng, Y.-F. Chiang, M.-H. Lee, S.-R. Peng, T.-F. Guo, P. Chen and T.-C. Wen, "CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells", Adv. Mater., 25, 3727-3732 (2013). https://doi.org/10.1002/adma.201301327
  31. S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T. C. Sum and Y. M. Lam, " The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells", Energy Environ. Sci., 7, 399-407 (2013).
  32. O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Gratzel, M. K. Nazeeruddin and H. J. Bolink, "Perovskite solar cells employing organic charge-transport layers", Nature Photon., 8, 128-132 (2013).
  33. P. Docampo, J. M. Ball, G. E. Eperon, H. J. Snaith, "Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates", Nature Commun., 4, 2761 (2013). https://doi.org/10.1038/ncomms3761
  34. J. H. Heo, H. J. Han, D. Kim, T. K. Ahn and S. H. Im, "Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency" Energy Environ. Sci., 8, 1602-1608 (2015). https://doi.org/10.1039/C5EE00120J
  35. J. H. Kim, P.-W. Liang, S. T. Williams, N. Cho, C.-C. Chueh, M. S. Glaz, D. S. Ginger and A. K.-Y. Jen, "High-Performance and Environmentally Stable Planar Heterojunction Perovskite Solar Cells Based on a Solution-Processed Copper-Doped Nickel Oxide Hole-Transporting Layer", Adv. Mater., 27, 695-701 (2015). https://doi.org/10.1002/adma.201404189
  36. G.-W. Kim, G. Kang, J. Kim, G.-Y. Lee, H. I. Kim, L. Pyeon, J. Lee and T. Park, "Dopant-free polymeric hole transport materials for highly efficient and stable perovskite solar cells ", Energy Environ. Sci., 9, 2326-2333 (2016). https://doi.org/10.1039/C6EE00709K
  37. Y. Du, H. Cai, J. Ni, J. Li, H. Yu, X. Sun, Y. Wu, H. Wen and J. Zhang, "Air-processed, efficient CH3NH3PbI3−xClx perovskite solar cells with organic polymer PTB7 as a hole-transport layer", RSC Adv., 5, 66981-66987 (2015). https://doi.org/10.1039/C5RA11081E
  38. J. H. Heo, D. H. Song, H. J. Han, S. Y. Kim, J. H. Kim, D. Kim, H. W. Shin, T. K .Ahn, C. Wolf, T.-W. Lee, S. H. Im, "Planar $CH_3NH_3PbI_3$ Perovskite Solar Cells with Constant 17.2% Average Power Conversion Efficiency Irrespective of the Scan Rate", Adv. Mater. 27, 3424-3430 (2015). https://doi.org/10.1002/adma.201500048
  39. B. Cai, Y. Xing, Z. Yang, W.-H. Zhang and J. Qiu, " High performance hybrid solar cells sensitized by organolead halide perovskites", Energy Environ. Sci., 6, 1480-1485 (2013). https://doi.org/10.1039/c3ee40343b
  40. Saripally Sudhaker Reddy , Kumarasamy Gunasekar, Jin Hyuck Heo, Sang Hyuk Im, Chang Su Kim, Dong-Ho Kim, Jong Hun Moon, Jin Yong Lee, Myungkwan Song , and Sung-Ho Jin, "Highly Effi cient Organic Hole Transporting Materials for Perovskite and Organic Solar Cells with Long-Term Stability", Adv. Mater., 28, 686-693, (2016) https://doi.org/10.1002/adma.201503729
  41. Kakaraparthi Kranthiraja, Kumarasamy Gunasekar, Hyunji Kim, An-Na Cho, Nam-Gyu Park, Seonha Kim, Bumjoon J. Kim, Ryosuke Nishikubo, Akinori Saeki, Myungkwan Song, and Sung-Ho Jin, "High-Performance Long-Term-Stable Dopant-Free Perovskite Solar Cells and Additive-Free Organic Solar Cells by Employing Newly Designed Multirole $\pi$-Conjugated Polymers", Adv. Mater., 29, 1700183, (2017) https://doi.org/10.1002/adma.201700183
  42. Kakaraparthi Kranthiraja, Sang Ho Park, Hyunji Kim, Kumarasamy Gunasekar, Gibok Han, Bumjoon J. Kim, Chang Su Kim, Soohyun Kim, Hyunjung Lee, Ryosuke Nishikubo, Akinori Saeki, Sung-Ho Jin, and Myungkwan Song, "Accomplishment of Multifunctional $\pi$‑Conjugated Polymers by Regulating the Degree of Side-Chain Fluorination for Efficient Dopant-Free Ambient-Stable Perovskite Solar Cells and Organic Solar Cells", ACS Appl. Mater. interfaces, 9, 36053-36060, (2017) https://doi.org/10.1021/acsami.7b09146
  43. F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, M. G. Kanatzidis, Nat. Photo., 8, 489 (2014) https://doi.org/10.1038/nphoton.2014.82
  44. N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. guarnera, A-A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, H. J. Snaith, " Lead-free organic-inorganic tin halide perovskites for photovoltaic applications ", Energy Environo. Sci., 7, 3061 (2014) https://doi.org/10.1039/C4EE01076K
  45. S. J. Lee, S. S. Shin, Y. C. Kim, D. Kim, T. K. Ahn, J. H. Noh, J. Seo, S. I. Seok," Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF2-Pyrazine Complex", J. Am. Chem. Soc, 138, 3974-3977 (2016). https://doi.org/10.1021/jacs.6b00142
  46. W. Liao, D. Zhao, Y. Yu, C. R. Grice, C. Wang, A. J. Cimaroli, P. Schulz, W. Meng, K. Zhu, R-G. Xiong, Y. Yan, "Lead-Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22%", Adv. Mater., 28, 9333-9340 (2016). https://doi.org/10.1002/adma.201602992
  47. Shuyan Shao, Jian Liu, Giuseppe Portale, Hong-Hua Fang, Graeme R. Blake, Gert H. ten Brink, L. Jan Anton Koster, and Maria Antonietta Loi, "Highly Reproducible Sn-Based Hybrid Perovskite Solar Cells with 9% Efficiency", Adv. Energy. Mater, 8, 1702019 (2018) https://doi.org/10.1002/aenm.201702019
  48. B-W. Park, B. Philippe, X. Zhang, H. Rensmo, G. Boschloo, E. M. J. Johansson, " Bismuth based hybrid perovskites A3Bi2I9 (A:Methylammonium or Cesuim) for solar cell application", Adv. Mater. 27, 6806-6813 (2015). https://doi.org/10.1002/adma.201501978
  49. Trilok Singh, Ashish Kulkarni, Masashi Ikegami, and Tsutomu Miyasaka, "Effect of Electron Transporting Layer on Bismuth-Based Lead-Free Perovskite (CH3NH3)3 Bi2I9 for Photovoltaic Applications", ACS Appl. Mater. Interfaces, 8, 14542-14547 (2016) https://doi.org/10.1021/acsami.6b02843
  50. Xinqian Zhang, Gang Wu, Zhuowei Gu, Bing Guo, Wenqing Liu, Shida Yang, Tao Ye, Chen Chen, Weiwei Tu, Hongzheng Chen, " Active-layer evolution and efficiency improvement of (CH3NH3) 3Bi2I9-based solar cell on $TiO_2$-deposited ITO substrate", Nano Res. 9, 2921-2930, (2016) https://doi.org/10.1007/s12274-016-1177-8
  51. Malin B. Johansson, Huimin Zhu, and Erik M. J. Johansson, "Extended Photo-Conversion Spectrum in Low-Toxic Bismuth Halide Perovskite Solar Cells", J. Phys. Chem. Lett, 7, 3467-3471, (2016) https://doi.org/10.1021/acs.jpclett.6b01452
  52. Jan-Christoph Hebig, Irina Kuhn, Jan Flohre, and Thomas Kirchartz, "Optoelectronic Properties of (CH3NH3)3Sb2I9 Thin Films for Photovoltaic Applications", ACS Energy Lett., 1, 309-314, (2016) https://doi.org/10.1021/acsenergylett.6b00170