DOI QR코드

DOI QR Code

Low-Temperature Processable Charge Transporting Materials for the Flexible Perovskite Solar Cells

  • Jo, Jea Woong (Department of Energy and Materials Engineering, Dongguk University) ;
  • Yoo, Yongseok (Department of Chemical Engineering, Hanyang University) ;
  • Jeong, Taehee (Department of Chemical Engineering, Hanyang University) ;
  • Ahn, SeJin (Photovoltaics Laboratory, Korea Institute of Energy Research (KIER)) ;
  • Ko, Min Jae (Department of Chemical Engineering, Hanyang University)
  • Received : 2018.04.29
  • Accepted : 2018.05.10
  • Published : 2018.11.10

Abstract

Organic-inorganic hybrid lead halide perovskites have been extensively investigated for various optoelectronic applications. Particularly, owing to their ability to form highly crystalline and homogeneous films utilizing low-temperature solution processes (< $150^{\circ}C$), perovskites have become promising photoactive materials for realizing high-performance flexible solar cells. However, the current use of mesoporous $TiO_2$ scaff olds, which require high-temperature sintering processes (> $400^{\circ}C$), has limited the fabrication of perovskite solar cells on flexible substrates. Therefore, the development of a low-temperature processable charge-transporting layer has emerged as an urgent task for achieving flexible perovskite solar cells. This review summarizes the recent progress in low-temperature processable electron- and hole-transporting layer materials, which contribute to improved device performance in flexible perovskite solar cells.

Keywords

Acknowledgement

Supported by : Korea Institute of Energy Research, The Korea Institute of Energy Technology Evaluation and Planning (KETEP), National Research Foundation

References

  1. Green, M., Ho-Baillie, A., Snaith, H.J. : The emergence of perovskite solar cells. Nat. Photonics 8, 506 (2014) https://doi.org/10.1038/nphoton.2014.134
  2. Kim, H.S., Lee, C.R., Im, J.H., Lee, K.B., Moehl, T., Marchioro, A., Moon, S.J., Humphry-Baker, R., Yum, J.H., Moser, J.E., Gratzel, M., Park, N.G. : Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012) https://doi.org/10.1038/srep00591
  3. Cho, H., Jeong, S.-H., Park, M.-H., Kim, Y.-H., Wolf, C., Lee, C.-L., Heo, J.H., Sadhanala, A., Myoung, N., Yoo, S., Im, S.H., Friend, R.H., Lee, T.-W. : Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350, 1222 (2015) https://doi.org/10.1126/science.aad1818
  4. Yuan, M., Quan, L.N., Comin, R., Walters, G., Sabatini, R., Voznyy, O., Hoogland, S., Zhao, Y., Beauregard, E.M., Kanjanaboos, P., Lu, Z., Kim, D.H., Sargent, E.H. : Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11, 872 (2016) https://doi.org/10.1038/nnano.2016.110
  5. Dou, L., Yang, Y., You, J., Hong, Z., Chang, W.-H., Li, G., Yang, Y. : Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 5, 5404 (2014) https://doi.org/10.1038/ncomms6404
  6. Hao, F., Stoumpos, C.C., Cao, D.H., Chang, R.P.H., Kanatzidis, M.G. : Lead-free solid-state organic-inorganic halide perovskite solar cells. Nat. Photonics 8, 489 (2014) https://doi.org/10.1038/nphoton.2014.82
  7. Noel, N.K., Stranks, S.D., Abate, A., Wehrenfennig, C., Guarnera, S., Haghighirad, A.-A., Sadhanala, A., Eperon, G.E., Pathak, S.K., Johnston, M.B., Petrozza, A., Herz, L.M., Snaith, H.J. : Lead-free organic-inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7, 3061 (2014) https://doi.org/10.1039/C4EE01076K
  8. Xing, G., Mathews, N., Sun, S., Lim, S.S., Lam, Y.M., Gratzel, M., Mhaisalkar, S., Sum, T.C. : Long-range balanced electron- and hole-transport lengths in organic-inorganic $CH_3NH_3PbI_3$. Science 342, 344 (2013) https://doi.org/10.1126/science.1243167
  9. Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J.P., Leijtens, T., Herz, L.M., Petrozza, A., Snaith, H.J. : Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341 (2013) https://doi.org/10.1126/science.1243982
  10. Leijtens, T., Stranks, S.D., Eperon, G.E., Lindblad, R., Johansson, E.M.J., McPherson, I.J., Rensmo, H., Ball, J.M., Lee, M.M., Snaith, H.J. : Electronic properties of meso-superstructured and planar organometal halide perovskite films: charge trapping, photodoping, and carrier mobility. ACS Nano 8, 7147 (2014) https://doi.org/10.1021/nn502115k
  11. Wehrenfennig, C., Eperon, G.E., Johnston, M.B., Snaith, H.J., Herz, L.M. : High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584 (2014) https://doi.org/10.1002/adma.201305172
  12. D'Innocenzo, V., Grancini, G., Alcocer, M.J.P., Kandada, A.R.S., Stranks, S.D., Lee, M.M., Lanzani, G., Snaith, H.J., Petrozza, A. : Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 5, 3586 (2014) https://doi.org/10.1038/ncomms4586
  13. Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T. : Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050 (2009) https://doi.org/10.1021/ja809598r
  14. Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., Snaith, H.J. : Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643 (2012) https://doi.org/10.1126/science.1228604
  15. Burschka, J., Pellet, N., Moon, S.J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., Gratzel, M. : Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316 (2013) https://doi.org/10.1038/nature12340
  16. Jeon, N.J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S., Seok, S.I. : Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 13, 897 (2014) https://doi.org/10.1038/nmat4014
  17. Jeon, N.J., Noh, J.H., Yang, W.S., Kim, Y.C., Ryu, S., Seo, J., Seok, S.I. : Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476 (2015) https://doi.org/10.1038/nature14133
  18. National Renewable Energy Laboratory, Best Research-Cell Efficiencies Chart. https://www.nrel.gov/pv/assets/images/efficiency-chart.png
  19. Yang, W.S., Park, B.-W., Jung, E.H., Jeon, N.J., Kim, Y.C., Lee, D.U., Shin, S.S., Seo, J., Kim, E.K., Noh, J.H., Seok, S.I. : Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356, 1376 (2017) https://doi.org/10.1126/science.aan2301
  20. McMeekin, D.P., Sadoughi, G., Rehman, W., Eperon, G.E., Saliba, M., Horantner, M.T., Haghighirad, A., Sakai, N., Korte, L., Rech, B., Johnston, M.B., Herz, L.M., Snaith, H.J. : A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151 (2016) https://doi.org/10.1126/science.aad5845
  21. Hwang, K., Jung, Y.-S., Heo, Y.-J., Scholes, F.H., Watkins, S.E., Subbiah, J., Jones, D.J., Kim, D.-Y., Vak, D. : Toward large scale roll-to-roll production of fully printed perovskite solar cells. Adv. Mater. 27, 1241 (2015) https://doi.org/10.1002/adma.201404598
  22. Schmidt, T.M., Larsen-Olsen, T.T., Carle, J.E., Angmo, D., Krebs, F.C. : Upscaling of perovskite solar cells: fully ambient roll processing of flexible perovskite solar cells with printed back electrodes. Adv. Energy Mater. 5, 1500569 (2015) https://doi.org/10.1002/aenm.201500569
  23. Hodes, G., Cahen, D. : Photovoltaics: Perovskite cells roll forward. Nat. Photonics 8, 87 (2014) https://doi.org/10.1038/nphoton.2014.5
  24. Di Giacomo, F., Fakharuddin, A., Josec, R., Brown, T.M. : Progress, challenges and perspectives in flexible perovskite solar cells. Energy Environ. Sci. 9, 3007 (2016) https://doi.org/10.1039/C6EE01137C
  25. Popoola, I.K., Gondal, M.A., Qahtan, T.F. : Recent progress in flexible perovskite solar cells: materials, mechanical tolerance and stability. Renew. Sustain. Energy Rev. 82, 3127 (2018) https://doi.org/10.1016/j.rser.2017.10.028
  26. Susrutha, B., Giribabuab, L., Singh, S.P. : Recent advances in flexible perovskite solar cells. Chem. Commun. 51, 14696 (2015) https://doi.org/10.1039/C5CC03666F
  27. Zhou, Y., Game, O.S., Pang, S., Padture, N.P. : Microstructures of organometal trihalide perovskites for solar cells: their evolution from solutions and characterization. J. Phys. Chem. Lett. 6, 4827 (2015) https://doi.org/10.1021/acs.jpclett.5b01843
  28. Ahn, N., Son, D.-Y., Jang, I.-H., Kang, S.M., Choi, M., Park, N.-G. : Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide. J. Am. Chem. Soc. 137, 8696 (2015) https://doi.org/10.1021/jacs.5b04930
  29. Chueh, C.-C., Lia, C.-Z., Jen, A.K.-Y. : Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy Environ. Sci. 8, 1160 (2015) https://doi.org/10.1039/C4EE03824J
  30. Yang, G., Tao, H., Qin, P., Ke, W., Fang, G. : Recent progress in electron transport layers for efficient perovskite solar cells. J. Mater. Chem. A 4, 3970 (2016) https://doi.org/10.1039/C5TA09011C
  31. Heo, J.H., Im, S.H., Noh, J.H., Mandal, T.N., Lim, C.-S., Chang, J.A., Lee, Y.H., Kim, H.-J., Sarkar, A., Nazeeruddin, M.K., Gratzel, M., Seok, S.I. : Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 7, 486 (2013) https://doi.org/10.1038/nphoton.2013.80
  32. Zhou, H., Chen, Q., Li, G., Luo, S., Song, T., Duan, H.-S., Hong, Z., You, J., Liu, Y., Yang, Y. : Interface engineering of highly efficient perovskite solar cells. Science 345, 542 (2014) https://doi.org/10.1126/science.1254050
  33. Shi, J., Xu, X., Li, D., Meng, Q. : Interfaces in perovskite solar cells. Small 11, 2472 (2015) https://doi.org/10.1002/smll.201403534
  34. Koo, B., Jung, H., Park, M., Kim, J.-Y., Son, H.J., Cho, J., Ko, M.J. : Pyrite-based bi-functional layer for long-term stability and high-performance of organo-lead halide perovskite solar cells. Adv. Funct. Mater. 26, 5400 (2016) https://doi.org/10.1002/adfm.201601119
  35. Jeong, I., Kim, H.J., Lee, B.-S., Son, H.J., Kim, J.Y., Lee, D.-K., Kim, D.-E., Lee, J., Ko, M.J. : Highly efficient perovskite solar cells based on mechanically durable molybdenum cathode. Nano Energy 17, 131 (2015) https://doi.org/10.1016/j.nanoen.2015.07.025
  36. Vclker, S.F., Collavini, S., Delgado, J.L. : Organic charge carriers for perovskite solar cells. ChemSusChem 8, 3012 (2015) https://doi.org/10.1002/cssc.201500742
  37. Mali, S.S., Hong, C.K. : p-i-n/n-i-p type planar hybrid structure of highly efficient perovskite solar cells towards improved air stability: synthetic strategies and the role of p-type hole transport layer (HTL) and n-type electron transport layer (ETL) metal oxides. Nanoscale 8, 10528 (2016) https://doi.org/10.1039/C6NR02276F
  38. Nguyen, W.H., Bailie, C.D., Unger, E.L., McGehee, M.D. : Enhancing the hole-conductivity of spiro-OMeTAD without oxygen or lithium salts by using spiro $(TFSI)_2$ in perovskite and dye-sensitized solar cells. J. Am. Chem. Soc. 136, 10996 (2014) https://doi.org/10.1021/ja504539w
  39. Wang, Q.-K., Wang, R.-B., Shen, P.-F., Li, C., Li, Y.-Q., Liu, L.-J., Duhm, S., Tang, J.-X. : Energy level off sets at lead halide perovskite/organic hybrid interfaces and their impacts on charge separation. Adv. Mater. Interfaces 2, 1400528 (2015) https://doi.org/10.1002/admi.201400528
  40. Bae, S., Han, S.J., Shin, T.J., Jo, W.H. : Two different mechanisms of $CH_3NH_3PbI_3$ film formation in one-step deposition and its effect on photovoltaic properties of OPV-type perovskite solar cells. J. Mater. Chem. 3, 23964 (2015) https://doi.org/10.1039/C5TA06870C
  41. Li, Y., Zhao, Y., Chen, Q., Yang, Y., Liu, Y., Hong, Z., Liu, Z., Hsieh, Y.-T., Meng, L., Li, Y., Yang, Y. : Multifunctional fullerene derivative for interface engineering in perovskite solar cells. J. Am. Chem. Soc. 137, 15540 (2015) https://doi.org/10.1021/jacs.5b10614
  42. Momblona, C., Gil-Escrig, L., Bandiello, E., Hutter, E.M., Sessolo, M., Lederer, K., Blochwitz-Nimoth, J., Bolink, H.J. : Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers. Energy Environ. Sci. 9, 3456 (2016) https://doi.org/10.1039/C6EE02100J
  43. Kim, B.J., Kim, D.H., Lee, Y.-Y., Shin, H.-W., Han, G.S., Hong, J.S., Mahmood, K., Ahn, T.K., Joo, Y.-C., Hong, K.S., Park, N.-G., Lee, S., Jung, H.S. : Highly efficient and bending durable perovskite solar cells: toward a wearable power source. Energy Environ. Sci. 8, 916 (2015) https://doi.org/10.1039/C4EE02441A
  44. Yang, D., Yang, R., Zhang, J., Yang, Z., Liu, S., Li, C. : High efficiency flexible perovskite solar cells using superior low temperature $TiO_2$. Energy Environ. Sci. 8, 3208 (2015) https://doi.org/10.1039/C5EE02155C
  45. Jeong, I., Jung, H., Park, M., Suh Park, J., Son, H.J., Joo, J., Lee, J., Ko, M.J. : A tailored $TiO_2$ electron selective layer for high-performance flexible perovskite solar cells via low temperature UV process. Nano Energy 28, 380 (2016) https://doi.org/10.1016/j.nanoen.2016.09.004
  46. Kumar, M.H., Yantara, N., Dharani, S., Graetzel, M., Mhaisalkar, S., Boix, P.P., Mathews, N. : Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chem. Commun. 49, 11089 (2013) https://doi.org/10.1039/c3cc46534a
  47. Liu, D., Kelly, T.L. : Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 8, 133 (2013)
  48. Park, M., Kim, J.-Y., Son, H.J., Lee, C.-H., Jang, S.S., Ko, M.J. : Low-temperature solution-processed Li-doped $SnO_2$ as an effective electron transporting layer for high-performance flexible and wearable perovskite solar cells. Nano Energy 26, 208 (2016) https://doi.org/10.1016/j.nanoen.2016.04.060
  49. Shin, S.S., Yang, W.S., Noh, J.H., Suk, J.H., Jeon, N.J., Park, J.H., Kim, J.S., Seong, W.M., Seok, S.I. : High-performance flexible perovskite solar cells exploiting $Zn_2SnO_4$ prepared in solution below $100^{\circ}C$. Nat. Commun. 6, 7410 (2015) https://doi.org/10.1038/ncomms8410
  50. Shin, S.S., Yang, W.S., Yeom, E.J., Lee, S.J., Jeon, N.J., Joo, Y.-C., Park, I.J., Noh, J.H., Seok, S.I. : Tailoring of electron-collecting oxide nanoparticulate layer for flexible perovskite solar cells. J. Phys. Chem. Lett. 7, 1845 (2016) https://doi.org/10.1021/acs.jpclett.6b00295
  51. Wang, K., Shia, Y., Gao, L., Chia, R., Shia, K., Guoa, B., Zhao, L., Ma, T. : $W(Nb)O_x$-based efficient flexible perovskite solar cells: from material optimization to working principle. Nano Energy 31, 424 (2017) https://doi.org/10.1016/j.nanoen.2016.11.054
  52. Feng, J., Yang, Z., Yang, D., Ren, X., Zhu, X., Jin, Z., Zi, W., Wei, Q., Liu, S. : E-beam evaporated $Nb_2O_5$ as an effective electron transport layer for large flexible perovskite solar cells. Nano Energy 36, 1 (2017) https://doi.org/10.1016/j.nanoen.2017.04.010
  53. Yoon, H., Kang, S.M., Lee, J.-K., Choi, M. : Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency. Energy Environ. Sci. 9, 2262 (2016) https://doi.org/10.1039/C6EE01037G
  54. Wang, Y.-C., Li, X., Zhu, L., Liu, X., Zhang, W., Fang, J. : Efficient and hysteresis-free perovskite solar cells based on a solution processable polar fullerene electron transport layer. Adv. Energy Mater. 7, 1701144 (2017) https://doi.org/10.1002/aenm.201701144
  55. Jeng, J.-Y., Chiang, Y.-F., Lee, M.-H., Peng, S.-R., Guo, T.-F., Chen, P., Wen, T.-C. : $CH_3NH_3PbI_3$ perovskite/fullerene planarheterojunction hybrid solar cells. Adv. Mater. 25, 3727 (2013) https://doi.org/10.1002/adma.201301327
  56. Docampo, P., Ball, J.M., Darwich, M., Eperon, G.E., Snaith, H.J. : Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun. 4, 2761 (2013) https://doi.org/10.1038/ncomms3761
  57. You, J., Hong, Z., Yang, Y., Chen, Q., Cai, M., Song, T.-B., Chen, C.-C., Lu, S., Liu, Y., Zhou, H., Yang, Y. : Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano 8, 1674 (2014) https://doi.org/10.1021/nn406020d
  58. Lim, K.-G., Kim, H.-B., Jeong, J., Kim, H., Kim, J.Y., Lee, T.-W. : Boosting the power conversion efficiency of perovskite solar cells using self-organized polymeric hole extraction layers with high work function. Adv. Mater. 26, 6461 (2014) https://doi.org/10.1002/adma.201401775
  59. Park, M., Kim, H.J., Jeong, I., Lee, J., Lee, H., Son, H.J., Kim, D.-E., Ko, M.J. : Mechanically recoverable and highly efficient perovskite solar cells: investigation of intrinsic flexibility of organic-inorganic perovskite. Adv. Energy Mater. 5, 1501406 (2015) https://doi.org/10.1002/aenm.201501406
  60. Hu, X., Huang, Z., Zhou, X., Li, P., Wang, Y., Huang, Z., Su, M., Ren, W., Li, F., Li, M., Chen, Y., Song, Y. : Wearable largescale perovskite solar-power source via nanocellular scaffold. Adv. Mater. 29, 1703236 (2017) https://doi.org/10.1002/adma.201703236
  61. Jo, J.W., Seo, M.-S., Park, M., Kim, J.-Y., Park, J.S., Han, I.K., Ahn, H., Jung, J.W., Sohn, B.-H., Ko, M.J., Son, H.J. : Improving performance and stability of flexible planar-heterojunction perovskite solar cells using polymeric hole-transport material. Adv. Funct. Mater. 26, 4464 (2016) https://doi.org/10.1002/adfm.201600746
  62. Bi, C., Chen, B., Wei, H., DeLuca, S., Huang, J. : Efficient flexible solar cell based on composition-tailored hybrid perovskite. Adv. Mater. 29, 1605900 (2017) https://doi.org/10.1002/adma.201605900
  63. Yin, X., Chen, P., Que, M., Xing, Y., Que, W., Niu, C., Shao, J. : Highly efficient flexible perovskite solar cells using solution-derived $NiO_x$ hole contacts. ACS Nano 10, 3630 (2016) https://doi.org/10.1021/acsnano.5b08135
  64. Ye, F., Tang, W., Xie, F., Yin, M., He, J., Wang, Y., Chen, H., Qiang, Y., Yang, X., Han, L. : Low-temperature soft-cover deposition of uniform large-scale perovskite films for high-performance solar cells. Adv. Mater. 29, 1701440 (2017) https://doi.org/10.1002/adma.201701440
  65. Najafi, M., Giacomo, F.D., Zhang, D., Shanmugam, S., Senes, A., Verhees, W., Hadipour, A., Galagan, Y., Aernouts, T., Veenstra, S., Andriessen, R. : Highly efficient and stable flexible perovskite solar cells with metal oxides nanoparticle charge extraction layers. Small 14, 1702775 (2018) https://doi.org/10.1002/smll.201702775
  66. Wang, Q., Chueh, C.-C., Zhao, T., Cheng, J., Eslamian, M., Choy, W.C.H., Jen, A.K.-Y. : Effects of self-assembled monolayer modification of nickel oxide nanoparticles layer on the performance and application of inverted perovskite solar cells. ChemSusChem 10, 3794 (2017) https://doi.org/10.1002/cssc.201701262
  67. He, Q., Yao, K., Wang, X., Xia, X., Leng, S., Li, F. : Room-temperature and solution-processable Cu-doped nickel oxide nanoparticles for efficient hole-transport layers of flexible large-area perovskite solar cells. ACS Appl. Mater. Interfaces 9, 41887 (2017) https://doi.org/10.1021/acsami.7b13621
  68. Wu, Y., Yang, X., Chen, H., Zhang, K., Qin, C., Liu, J., Peng, W., Islam, A., Bi, E., Ye, F., Yin, M., Zhang, P., Han, L. : Highly compact $TiO_2$ layer for efficient hole-blocking in perovskite solar cells. Appl. Phys. Express 7, 052301 (2014) https://doi.org/10.7567/APEX.7.052301
  69. Saliba, M., Matsui, T., Domanski, K., Seo, J.-Y., Ummadisingu, A., Zakeeruddin, S.M., Correa-Baena, J.-P., Tress, W.R., Abate, A., Hagfeldt, A., Gratzel, M. : Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206 (2016) https://doi.org/10.1126/science.aah5557
  70. Saliba, M., Matsui, T., Seo, J.-Y., Domanski, K., Correa-Baena, J.-P., Nazeeruddin, M.K., Zakeeruddin, S.M., Tress, W., Abate, A., Hagfeldt, A., Gratzel, M. : Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989 (2016) https://doi.org/10.1039/C5EE03874J
  71. Seo, M.-S., Jeong, I., Park, J.-S., Lee, J., Han, I.K., Lee, W.I., Son, H.J., Sohn, B.-H., Ko, M.J. : Vertically aligned nanostructured $TiO_2$ photoelectrodes for high efficiency perovskite solar cells via a block copolymer template approach. Nanoscale 8, 11472 (2016) https://doi.org/10.1039/C6NR01010E
  72. Jeong, I., Park, Y.H., Bae, S., Park, M., Jeong, H., Lee, P., Ko, M.J. : Solution-processed ultrathin $TiO_2$ compact layer hybridized with mesoporous $TiO_2$ for high-performance perovskite solar cells. ACS Appl. Mater. Interfaces 9, 36865 (2017) https://doi.org/10.1021/acsami.7b11901
  73. Son, D.-Y., Lee, J.-W., Choi, Y.J., Jang, I.-H., Lee, S., Yoo, P.J., Shin, H., Ahn, N., Choi, M., Kim, D., Park, N.-G. : Self-formed grain boundary healing layer for highly efficient $CH_3NH_3PbI_3$ perovskite solar cells. Nat. Energy 1, 16081 (2016) https://doi.org/10.1038/nenergy.2016.81
  74. Lu, H., Ma, Y., Gu, B., Tian, W., Li, L. : Identifying the optimum thickness of electron transport layers for highly efficient perovskite planar solar cells. J. Mater. Chem. A 3, 16445 (2015) https://doi.org/10.1039/C5TA03686K
  75. Choi, J., Song, S., Horantner, M.T., Snaith, H.J., Park, T. : Well-defined nanostructured, single-crystalline $TiO_2$ electron transport layer for efficient planar perovskite solar cells. ACS Nano 10, 6029 (2016) https://doi.org/10.1021/acsnano.6b01575
  76. Chakravarthi, N., Gunasekar, K., Cho, W., Long, D.X., Kim, Y.-H., Song, C.E., Lee, J.-C., Facchetti, A., Song, M., Noh, Y.-Y., Jin, S.-H. : A simple structured and efficient triazine-based molecule as an interfacial layer for high performance organic electronics. Energy Environ. Sci. 9, 2595 (2016) https://doi.org/10.1039/C6EE00292G
  77. Azmi, R., Hadmojo, W.T., Sinaga, S., Lee, C.-L., Yoon, S.C., Jung, I.H., Jang, S.-Y. : Perovskite solar cells: high-efficiency lowtemperature ZnO based perovskite solar cells based on highly polar, nonwetting self-assembled molecular layers. Adv. Energy Mater. 8, 1701683 (2018) https://doi.org/10.1002/aenm.201701683
  78. Ke, W., Fang, G., Liu, Q., Xiong, L., Qin, P., Tao, H., Wang, J., Lei, H., Li, B., Wan, J., Yang, G., Yan, Y. : Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J. Am. Chem. Soc. 137, 6730 (2015) https://doi.org/10.1021/jacs.5b01994
  79. Baena, J.P.C., Steier, L., Tress, W., Saliba, M., Neutzner, S., Matsu, T., Giordano, F., Jacobsson, T.J., Kandada, A.R.S., Zakeeruddin, S.M., Petrozza, A., Abate, A., Nazeeruddin, M.K., Gratzel, M., Hagfeldt, A. : Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci. 8, 2928 (2015) https://doi.org/10.1039/C5EE02608C
  80. Jiang, Q., Zhang, L., Wang, H., Yang, X., Meng, J., Liu, H., Yin, Z., Wu, J., Zhang, X., You, J. : Enhanced electron extraction using $SnO_2$ for high-efficiency planar-structure $HC(NH_2)_2PbI_3$ -based perovskite solar cells. Nat. Energy 2, 16177 (2016)
  81. Shin, S.S., Kim, D.W., Hwang, D., Suk, J.H., Oh, L.S., Han, B.S., Kim, D.H., Kim, J.S., Kim, D., Kim, J.Y., Hong, K.S. : Controlled interfacial electron dynamics in highly efficient $Zn_2SnO_4$-based dye-sensitized solar cells. ChemSusChem 7, 501 (2014) https://doi.org/10.1002/cssc.201300915
  82. Young, D.L., Moutinho, H., Yan, Y., Coutts, T.J. : Growth and characterization of radio frequency magnetron sputter-deposited zinc stannate, $Zn_2SnO_4$, thin films. J. Appl. Phys. 92, 310 (2002) https://doi.org/10.1063/1.1483104
  83. Shao, Y., Xiao, Z., Bi, C., Yuan, Y., Huang, J. : Origin and elimination of photocurrent hysteresis by fullerene passivation in $CH_3NH_3PbI_3$ planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014) https://doi.org/10.1038/ncomms6784
  84. Shao, Y., Yuan, Y., Huang, J. : Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells. Nat. Energy 1, 15001 (2016) https://doi.org/10.1038/nenergy.2015.1
  85. Wolff, C.M., Zu, F., Paulke, A., Toro, L.P., Koch, N., Neher, D. : Reduced interface-mediated recombination for high open-circuit voltages in $CH_3NH_3PbI_3$ solar cells. Adv. Mater. 29, 1700159 (2017) https://doi.org/10.1002/adma.201700159
  86. Ahn, N., Kwak, K., Jang, M.S., Yoon, H., Lee, B.Y., Lee, J.-K., Pikhitsa, P.V., Byun, J., Choi, M. : Trapped charge-driven degradation of perovskite solar cells. Nat. Commun. 7, 13422 (2016) https://doi.org/10.1038/ncomms13422
  87. Xu, X., Chen, Q., Hong, Z., Zhou, H., Liu, Z., Chang, W.-H., Sun, P., Chen, H., Marco, N.D., Wang, M., Yang, Y. : Working mechanism for flexible perovskite solar cells with simplified architecture. Nano Lett. 15, 6514 (2015) https://doi.org/10.1021/acs.nanolett.5b02126
  88. Kranthiraja, K., Gunasekar, K., Kim, H., Cho, A.-N., Park, N.-G., Kim, S., Kim, B.J., Nishikubo, R., Saeki, A., Song, M., Jin, S.-H. : High-performance long-term-stable dopant-free perovskite solar cells and additive-free organic solar cells by employing newly designed multirole ${\pi}$-conjugated polymers. Adv. Mater. 29, 1700183 (2017) https://doi.org/10.1002/adma.201700183
  89. Yana, W., Li, Y., Li, Y., Ye, S., Liu, Z., Wang, S., Bian, Z., Huang, C. : High-performance hybrid perovskite solar cells with open circuit voltage dependence on hole-transporting materials. Nano Energy 16, 428 (2015) https://doi.org/10.1016/j.nanoen.2015.07.024
  90. Huang, X., Wang, K., Yi, C., Meng, T., Gong, X. : Efficient perovskite hybrid solar cells by highly electrical conductive PEDOT:PSS hole transport layer. Adv. Energy Mater. 6, 1501773 (2016) https://doi.org/10.1002/aenm.201501773
  91. Liang, P.-W., Chueh, C.-C., Williams, S.T., Jen, A.K.-Y. : Roles of fullerene-based interlayers in enhancing the performance of organometal perovskite thin-film solar cells. Adv. Energy Mater. 5, 1402321 (2015) https://doi.org/10.1002/aenm.201402321
  92. Zuo, C., Ding, L. : Modified PEDOT layer makes a 1.52 $V_{oc}$ for perovskite/PCBM solar cells. Adv. Energy Mater. 7, 1601193 (2017) https://doi.org/10.1002/aenm.201601193
  93. Sin, D.H., Ko, H., Jo, S.B., Kim, M., Bae, G.Y., Cho, K. : Decoupling charge transfer and transport at polymeric hole transport layer in perovskite solar cells. ACS Appl. Mater. Interfaces 8, 6546 (2016) https://doi.org/10.1021/acsami.5b12023
  94. Nardes, A.M., Kemerink, M., Janssen, R.A.J., Bastiaansen, J.A.M., Kiggen, N.M.M., Langeveld, B.M.W., van Breemen, A.J.J.M., de Kok, M.M. : Microscopic understanding of the anisotropic conductivity of PEDOT:PSS thin films. Adv. Mater. 19, 1196 (2007) https://doi.org/10.1002/adma.200602575
  95. Na, S.-I., Wang, G., Kim, S.-S., Kim, T.-W., Oh, S.-H., Yu, B.-K., Lee, T., Kim, D.-Y. : Evolution of nanomorphology and anisotropic conductivity in solvent-modified PEDOT:PSS films for polymeric anodes of polymer solar cells. J. Mater. Chem. 19, 9045 (2009) https://doi.org/10.1039/b915756e
  96. Hou, F., Su, Z., Jin, F., Yan, X., Wang, L., Zhao, H., Zhu, J., Chu, B., Lia, W. : Efficient and stable planar heterojunction perovskite solar cells with an $MoO_3$/PEDOT:PSS hole transporting layer. Nanoscale 7, 9427 (2015) https://doi.org/10.1039/C5NR01864A
  97. Hou, Y., Zhang, H., Chen, W., Chen, S., Quiroz, C.O.R., Azimi, H., Osvet, A., Matt, G.J., Zeira, E., Seuring, J., Kausch-Busies, N., Lovenich, W., Brabec, C.J. : Inverted, environmentally stable perovskite solar cell with a novel low-cost and water-free PEDOT hole-extraction layer. Adv. Energy Mater. 5, 1500543 (2015) https://doi.org/10.1002/aenm.201500543
  98. Jeng, J.-Y., Chen, K.-C., Chiang, T.-Y., Lin, P.-Y., Tsai, T.-D., Chang, Y.-C., Guo, T.-F., Chen, P., Wen, T.-C., Hsu, Y.-J. : Nickel oxide electrode interlayer in $CH_3NH_3PbI_3$ perovskite/PCBM planar-heterojunction hybrid solar cells. Adv. Mater. 24, 4107 (2014)
  99. Zhu, Z., Bai, Y., Zhang, T., Liu, Z., Long, X., Wei, Z., Wang, Z., Zhang, L., Wang, J., Yan, F., Yang, S. : High-performance hole-extraction layer of sol-gel-processed NiO nanocrystals for inverted planar perovskite solar cells. Angew. Chem. Int. Ed. 53, 12571 (2014)
  100. Kim, J.H., Liang, P.W., Williams, S.T., Cho, N., Chueh, C.C., Glaz, M.S., Ginger, D.S., Jen, A.K.-Y. : High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer. Adv. Mater. 27, 695 (2015) https://doi.org/10.1002/adma.201404189
  101. Jung, J.W., Chueh, C.-C., Jen, A.K.-Y., Low-Temperature, A. : Solution-processable, Cu-doped nickel oxide hole-transporting layer via the combustion method for high-performance thin-film perovskite solar cells. Adv. Mater. 27, 7874 (2015) https://doi.org/10.1002/adma.201503298
  102. Park, J.H., Seo, J., Park, S., Shin, S.S., Kim, Y.C., Jeon, N.J., Shin, H.-W., Ahn, T.K., Noh, J.H., Yoon, S.C., Hwang, C.S., Seok, S.I. : Efficient $CH_3NH_3PbI_3$ perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition. Adv. Mater. 27, 4013 (2015) https://doi.org/10.1002/adma.201500523
  103. Jokar, E., Huang, Z.Y., Narra, S., Wang, C.-Y., Kattoor, V., Chung, C.-C., Diau, E.W.-G. : Anomalous charge-extraction behavior for graphene-oxide (GO) and reduced graphene-oxide (rGO) films as efficient p-contact layers for high-performance perovskite solar cells. Adv. Energy Mater. 8, 1701640 (2018) https://doi.org/10.1002/aenm.201701640
  104. Kang, J.S., Kim, J.-Y., Yoon, J., Kim, J., Yang, J., Chung, D.Y., Kim, M., Jeong, H., Son, Y.J., Kim, B.G., Jeong, J., Hyeon, T., Choi, M., Ko, M.J., Sung, Y.-E. : Room-temperature vapor deposition of cobalt nitride nanofilms for mesoscopic and perovskite solar cells. Adv. Energy Mater. 8, 1703114 (2018) https://doi.org/10.1002/aenm.201703114
  105. Zhang, Y., Hu, X., Chen, L., Huang, Z., Fu, Q., Liu, Y., Zhang, L., Chen, Y. : Flexible, hole transporting layer-free and stable $CH_3NH_3PbI_3/PC_{61}$BM planar heterojunction perovskite solar cells. Org. Electron. 30, 281 (2016) https://doi.org/10.1016/j.orgel.2016.01.002
  106. Bi, D., Yi, C., Luo, J., Decoppet, J.-D., Zhang, F., Zakeeruddin, S.M., Li, X., Hagfeldt, A., Gratzel, M. : Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 1, 16142 (2016) https://doi.org/10.1038/nenergy.2016.142
  107. Guo, Y., Shoyama, K., Sato, W., Nakamura, E. : Polymer stabilization of lead(II) perovskite cubic nanocrystals for semitransparent solar cells. Adv. Energy Mater. 6, 1502317 (2016) https://doi.org/10.1002/aenm.201502317
  108. Wang, X., Lia, Z., Xu, W., Kulkarni, S.A., Batabyal, S.K., Zhang, S., Cao, A., Wong, L.H. : TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode. Nano Energy 11, 728 (2015) https://doi.org/10.1016/j.nanoen.2014.11.042
  109. Nejand, B.A., Nazari, P., Gharibzadeh, S., Ahmadi, V., Moshaii, A. : All-inorganic large-area low-cost and durable flexible perovskite solar cells using copper foil as a substrate. Chem. Commun. 53, 747 (2017) https://doi.org/10.1039/C6CC07573H
  110. Qiu, L., He, S., Yang, J., Deng, J., Peng, H. : Fiber-shaped perovskite solar cells with high power conversion efficiency. Small 12, 2419 (2016) https://doi.org/10.1002/smll.201600326

Cited by

  1. All-Inorganic Perovskite CsPbI2Br Through Co-evaporation for Planar Heterojunction Solar Cells vol.15, pp.1, 2019, https://doi.org/10.1007/s13391-018-0095-1
  2. Uniform Cs2SnI6 Thin Films for Lead-Free and Stable Perovskite Optoelectronics via Hybrid Deposition Approaches vol.15, pp.2, 2018, https://doi.org/10.1007/s13391-018-00114-7
  3. Recent Progress in Inorganic Hole Transport Materials for Efficient and Stable Perovskite Solar Cells vol.15, pp.5, 2018, https://doi.org/10.1007/s13391-019-00163-6
  4. Aminosilane‐Modified CuGaO 2 Nanoparticles Incorporated with CuSCN as a Hole‐Transport Layer for Efficient and Stable Perovskite Solar Cells vol.6, pp.22, 2018, https://doi.org/10.1002/admi.201901372
  5. Efficient flexible perovskite solar cells based on a polymer additive vol.5, pp.1, 2018, https://doi.org/10.1088/2058-8585/ab5ce3
  6. A Cu2O-CuSCN Nanocomposite as a Hole-Transport Material of Perovskite Solar Cells for Enhanced Carrier Transport and Suppressed Interfacial Degradation vol.3, pp.8, 2020, https://doi.org/10.1021/acsaem.0c01001
  7. Strategy for the Complete Conversion of Thermally Grown PbI2 Layers in Inverted Perovskite Solar Cells vol.16, pp.6, 2018, https://doi.org/10.1007/s13391-020-00250-z
  8. Quasi-2D halide perovskites for resistive switching devices with ON/OFF ratios above 109 vol.12, pp.1, 2018, https://doi.org/10.1038/s41427-020-0202-2