• 제목/요약/키워드: periodic preventive maintenance

검색결과 56건 처리시간 0.025초

Optimal Schedules of Periodic Preventive Maintenance Model with Different PM Effect

  • Lim, Jae-Hak
    • International Journal of Reliability and Applications
    • /
    • 제9권1호
    • /
    • pp.113-122
    • /
    • 2008
  • In this paper, we consider a periodic preventive maintenance policy in which each preventive maintenance reduces the hazard rate of amount proportional to the failure intensity, which increases since the system started to operate. And the effect of preventive maintenance at each preventive maintenance epoch is different. The expected cost rate per unit time for the proposed model is obtained. We discuss the optimal number N of the periodic preventive maintenance and the optimal period x, which minimize the expected cost rate per unit time and obtain the optimal preventive maintenance schedule for given cost structures of the model. A numerical example is given for the purpose of illustrating our results when the failure time distribution is Weibull distribution.

  • PDF

수리 후 고장률이 지수적으로 증가하는 경우에 최적 예방보전 정책 (A Study on Optimal Preventive Maintenance Policy When Failure Rate is Exponentially Increasing After Repair)

  • 김태희;나명환
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제11권2호
    • /
    • pp.167-176
    • /
    • 2011
  • This paper introduces models for preventive maintenance policies and considers periodic preventive maintenance policy with minimal repair when the failure of system occurs. It is assumed that minimal repairs do not change the failure rate of the system. The failure rate under prevention maintenance received an effect by a previously prevention maintenance and the slope of failure rate increases the model where it considered. Also the start point of failure rate under prevention maintenance considers the degradation of system and that it increases quotient, it assumed. Per unit time it bought an expectation cost from under this prevention maintenance policy. We obtain the optimal periodic time and the number for the periodic preventive maintenance by using Nakagawa's Algorithm, which minimizes the expected cost per unit time.

교체-수리보증이 종료된 이후의 예방보전정책 (Preventive maintenance policy following the expiration of replacement-repair warranty)

  • 정기문
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제12권2호
    • /
    • pp.57-66
    • /
    • 2012
  • In this paper, we consider the periodic preventive maintenance model for a repairable system following the expiration of replacement-repair warranty. Under this preventive maintenance model, we derive the expressions for the expected cycle length, the expected total cost and the expected cost rate per unit time. Also, we determine the optimal preventive maintenance period and the optimal preventive maintenance number by minimizing the expected cost rate per unit time. Finally, the optimal periodic preventive maintenance policy is given for Weibull distribution case.

불완전보전을 고려한 시스템의 최적 정기 예방보전 시기 (Optimum Periodic Preventive Maintenance Time for a System with Imperfect Maintenance)

  • 정영배
    • 산업경영시스템학회지
    • /
    • 제17권32호
    • /
    • pp.221-226
    • /
    • 1994
  • Almost preventive maintenance policies assumed that the system after pm has failure rate as before pm with probability p and as good as new with probability 1-p. This paper considers the s-expected cost of the model with imperfect periodic preventive maintenance that increasing minimal repair costs at failure and obtains the optimum periodic preventive maintenance time. Numerical example are shown in which the failure time of the system has gamma distribution.

  • PDF

개선지수를 고려한 주기적 예방보전의 최적화에 관한 연구 (Optimal Periodic Preventive Maintenance with Improvement Factor)

  • Jae-Hak Lim
    • 품질경영학회지
    • /
    • 제31권3호
    • /
    • pp.193-204
    • /
    • 2003
  • In this paper, we consider a periodic preventive maintenance(PM) policy in which each PM reduces the hazard rate but remains the pattern of hazard rate unchanged. And the system undergoes only minimal repairs at failures between PM's. The expected cost rate per unit time is obtained. The optimal number N of PM and the optimal period x, which minimize the expected cost rate per unit time are discussed. Explicit solutions for the optimal periodic PM are given for the Weibull distribution case.

Cost Optimization of Ineffective Periodic Preventive Maintenance

  • Jung, Gi-Mun;Park, Dong-Ho;Yum, Joon-Keun
    • Communications for Statistical Applications and Methods
    • /
    • 제6권1호
    • /
    • pp.99-106
    • /
    • 1999
  • This paper considers an imperfect repair model for which the repairable system is maintained preventively at periodic times and is replaced by a new system when a predetermined number of preventive maintenance has been applied. our main objective of this is to determine the optimal number of preventive maintenances before the system is replaced and the optimal length of interval between two consecutive preventive maintenances under a new repair model which is referred to as an ineffective preventive maintenance. Such a model assumes a periodic preventive maintenance in which the system is effectively maintained with a certain probability. Otherwise the system is not improved at all after each maintenance and thus the failure rate remains the same as before. The criteria to determine the optimal number of preventive maintenances and length of period is the expected cost rate per unit time for an infinite time span. We give the explicit expressions for the expected cost rate per unit time. Some numerical examples are presented for illustrative purposes.

  • PDF

최소 신뢰도를 보장하는 비 주기적 예방보전 모형 개발 (Developing a Non-Periodic Preventive Maintenance Model Guaranteeing the Minimum Reliability)

  • 이주현;안선응
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제18권2호
    • /
    • pp.104-113
    • /
    • 2018
  • Purpose: This paper proposes the non-periodic preventive maintenance policy based on the level of cumulative hazard intensity. We aim to construct a cost-effectiveness on the proposed model with relaxing the constraint on reliability. Methods: We use the level of cumulative hazard intensity as a condition variable, instead of reliability. Such a level of cumulative hazard intensity can derive the reliability which decreases as the frequency of preventive maintenance action increases. We also model the imperfect preventive maintenance action using the proportional age setback model. Conclusion: We provide a numerical example to illustrate the proposed model. We also analyze how the parameters of our model affect the optimal preventive maintenance policy. The results show that as long as high reliability is guaranteed, the inefficient preventive maintenance action is performed reducing the system operation time. Moreover, the optimal value of the proposed model is sensitive to changes in preventive maintenance cost and replacement cost.

Optimal Preventive Maintenance Policy for a Repairable System

  • Jung, Ki-Mun
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권2호
    • /
    • pp.367-377
    • /
    • 2006
  • This paper develops a periodic preventive maintenance(PM) policy following the expiration of warranty. Two types of warranty are considered: renewing warranty and non-renewing warranty. Also, we consider the situation where each PM cost is an increasing function of the PM effect. We determine the optimal number of PM's before replacing the system by a new one and the optimal length of period for the periodic PM following the expiration of warranty. Explicit solutions to determine the optimal periodic PM are presented for the Weibull distribution case.

  • PDF

주기적인 예방보전정책의 베이즈 접근방법 (A Bayesian Approach to Periodic Preventive Maintenance Policy)

  • 한성실;정기문;권영섭
    • 품질경영학회지
    • /
    • 제29권3호
    • /
    • pp.39-48
    • /
    • 2001
  • Preventive maintenance(PM) is an action taken on a repairable system while it is still operating, which needs to be carried out in order to keep the system at the desired level of successful operation. In this paper, we consider a Bayesian approach to determine an optimal periodic preventive maintenance policy. When the failure time is Weibull distribution with uncertain parameters, a Bayesian approach is established. Some numerical examples are presented for illustrative purpose.

  • PDF

대여 장비의 예방정비 일정 결정을 위한 의사 결정 모델 개발 (Developing a Decision-Making Model to Determine the Preventive Maintenance Schedule for the Leased Equipment)

  • 이주현;배기호;안선응
    • 산업경영시스템학회지
    • /
    • 제41권2호
    • /
    • pp.24-31
    • /
    • 2018
  • As a system complexity increases and technology innovation progresses rapidly, leasing the equipment is considered as an important issue in many engineering areas. In practice, many engineering fields lease the equipment because it is an economical way to lease the equipment rather than to own the equipment. In addition, as the maintenance actions for the equipment are costly and need a specialist, the lessor is responsible for the maintenance actions in most leased contract. Hence, the lessor should establish the optimal maintenance strategy to minimize the maintenance cost. This paper proposes two periodic preventive maintenance policies for the leased equipment. The preventive maintenance action of policy 1 is performed with a periodic interval, in which their intervals are the same until the end of lease period. The other policy is to determine the periodic preventive maintenance interval minimizing total maintenance cost during the lease period. In addition, this paper presents two decision-making models to determine the preventive maintenance strategy for leased equipment based on the lessor's preference between the maintenance cost and the reliability at the end of lease period. The structural properties of the proposed decision-making model are investigated and algorithms to search the optimal maintenance policy that are satisfied by the lessor are provided. A numerical example is provided to illustrate the proposed model. The results show that a maintenance policy minimizing the maintenance cost is selected as a reasonable decision as the lease term becomes shorter. Moreover, the frequent preventive maintenance actions are performed when the minimal repair cost is higher than the preventive maintenance cost, resulting in higher maintenance cost.