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Abstract

In this paper, we consider a periodic preventive maintenance(PM) policy in which
each PM reduces the hazard rate but remains the pattern of hazard rate unchanged.
And the system undergoes only minimal repairs at failures between PM’s. The
expected cost rate per unit time is obtained. The optimal number N of PM and the
optimal period x, which minimize the expected cost rate per unit time are discussed.
Explicit solutions for the optimal periodic PM are given for the Weibull distribution

case.

1. Introduction

Preventive Maintenance(PM) has played
an important role in effective operation
and economic management of industrial
systems. PM
catastrophic

prevents unexpected
system and

ultimately extends the system life.

failure  of

PM problems have been studied by
many authors. Barlow and Hunter (1960)
propose two types of PM policies. One
policy is that PM is done periodically and
minimal repair at any intervening failure
between periodic PM's.

In almost earlier PM policy, it is
assumed that a system is as good as
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new one after PM. The imperfect PM
policy, in which PM 1is imperfect with
probability p, is introduced by Chan and

Down(1978) and is discussed in

Nakagawa(1979), Murthy and
Nguyen(1981), Brown and Proschan(1983)
and Fontenot and  Proschan(1984).

Canfield(1986) considers PM policy which
slows system degradation while the level
remains unchanged and the hazard
function is increased.

Recently, Park, Jung and Yum(2000)
Canfield's PM model with

various cost structures of running the

consider

system and find the optimal number of
PM’s
minimize the expected cost rate per unit

and the optimal period, which

time for an infinite time span.
Lie and Chun(1986)

improvement factor in hazard rate after

introduce an

maintenance. PM policy with improvement
factor is studied by several authors.
Nakagawa(1980) considers imperfect PM
policies for which the system after PM
reduced age. Nakagawa(1986)
periodic and sequential PM
policies for which the system has a
different failure distribution between PM's

h(D<h, (D for
any t>0, where h,(f) is the hazard rate
in the kth PM. And

Nakagawa(1988) a sequential
imperfect PM policies in which the hazard

has a
considers

in such a way that

period of
considers

rate after PM k becomes a,h(f) , where

a, is an improvement factor, when it

was h(t) in period k of PM,

Preventive maintenance policy has been
applied to various fields of industries
including  semiconductor manufacturing
company, public transportation company
and so on. Lai et. al. (2000) conduct a
case study of Kowloon Motor Bus
Company Limited (KMB) in which they
study the policies of PM and replacement
for an engine based on the minimization
of cost due to stoppage of an engine.
And Charles et. al. (2003) address the
problem of preventive maintenance (PM)
strategy optimization in a semiconductor
manufacturing environment, with the

objective of minimizing maintenance
costs.

In this paper, we consider a periodic
PM policy in which each PM reduces the
hazard rate but the pattern of hazard rate
remains unchanged. The system is
preventively maintained at periodic times
kx and is replaced by a new system at
the Nth PM, where k = 1, 2, ---, N. It is
assumed that the system undergoes only
minimal repair at any failure between
PM’s and hence, the hazard rate remains
unchanged by any of minimal repairs.
The expected cost rate per unit time is
obtained. The optimal number N of the
periodic PM and the optimal period x,
which minimize the expected cost rate
per unit time, are discussed.

In Section 2, we describe the periodic
PM model and

expression for the expected cost rate for

its assumptions. The
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the policy is obtained in Section 3.

Section 4 is devoted to discuss the
optimal period and the optimal number of
PM's for policy. In Section 5, the optimal
schedules are computed explicitly when
Weibuli

the failure time follows

distribution.

Notation

h(D hazard rate without PM

hym(®)  hazard rate with PM

X period of PM

N number of PM’s where the
system is replaced.
improvement factor in hazard

p rate, 0<p<l1.

C cost of minimal repair at

mr

failure
Com cost of PM
C,. cost of replacement

expected cost rate per unit
C(x,N) tirr?e. P

2. Model and Assumptions

We consider a periodic PM model with
an improvement factor which reduces the
hazard rate of the system after PM. The
followings are assumed :

(1) The system begins to operate at
time £=0.
(2) The PM is done at periodic time kx

(k =1, 2, --) where x>0, and is
replaced by new one at the Nth
PM.

(3) The hazard rate h(t) after PM k is
reduced to ph(t) when it was A(t)
in period k of PM where O0<p<1.
When p=0, the system after PM is
as good as new one while when
p=1, the system right after PM has
the same hazard rate as that just
prior to PM but has the same
degradation pattern as new one.

(4) The system undergoes only minimal
repair at failures between PM’'s.

(5) The repair and PM times are
negligible.

(6) h(t) is monotone increasing.

3. Expected Cost Rate Per
Unit Time

In this paper, we propose a periodic
PM model with an improvement factor in
which the hazard rate h(t) after PM k
becomes ph(t) when it was h(t) in the
period k of PM. Under this model, the

hazard rate k,,(?) is given by
B p(D) = ph,, (kx) + h(t— kx) (1)

for k = 0, 1, 2 where kx ¢t<
(k+1)x, h,,(0)=h(0) and x is the time
interval between PM interventions.

Substituting #%,,,(kx) in the equation (1)
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recursively, the equation (1) can be

rewritten as

hk( ) if 0<t<x
Z:l ph(x) + h(t— kx)

if Bx<t<(k+ 1)z,
k: 1’2,...’N.

(2)

R () =

Since it is well-known from Lemma 1.1
in Fontenot and Proschan(1984) that the
number of minimal repairs during the
period k of PM is
Poisson process(NHPP)

nonhomogeneous

with intensity

(B+ 1)x
function f \ hym(D)dt, the expected
X

cost rate per unit time can be obtained in
the following manner:

Expected Cost Rate Per Unit Time
= [(expected cost of minimal repairs in
[0, Nx))
+ (expected cost of PM in [0, Nx))
+ (expected cost of replacement)]/
Nx.

Each
expected cost

expected cost given in the
rate per unit time is
obtained as follows:

(1) Expected cost of minimal repairs in

0,80 = Col 30 [t ]

where  h,,(#) is given in the

equation (2).
(ii) Expected cost of PM in [0, Nx)

= (N-1 C,,..
(iii) Expected cost of replacement
= C

re:

Using (1), (i) and (i), the expected
cost rate per unit time for running the
PM with

during [0, Nx] is obtained as follows:

periodic improvement factor

For 0<p<1,
C(x’N?v DY (1 — phy
. =1 +1 1_
_[C’”’{ lgojl; J( 1-p h(x)
+ h(t— kx))dt+ (N—1)C,,,+ C,.1/ Nx.
®))
For p=1,
C(x,N)
=1 Ak+1x
=1l B, [ ) + 1t e a
+(N—1C,,+ C,.)/Nx.
(4)

and (4)
rewritten in more useful expression as

The equations (3) can be

follows:

For 0<p<1,

C(x, N) .
1 _1=0p"
~ L[ e D pv- 125

+Nf0 h(t)dt} +(N=1)Cpt C,e

5)
and for p=1,
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C(x,N)

= 1Co B )+ N [ "l

+(N=1)C,pmt C,.1/Nx
6)
, where D(x, p) = pxh(x)/ (1 —p).

4. Optimal Schedules for
the Periodic PM Policy

In this section, we find the optimal

period x* and the optimal number N* of
PM, which minimize the expected cost
rate per unit time.

We first find the optimal number of
PM, when the period x is fixed. To find
the

optimal N*,  which  minimizes
C(x,N), we form he following
inequalities.
C(x, N+1)=C(x,N)
and

C(x, N)<C(x, N—1).

For 0<p<l, it can be easily shown
that C(x, N+1)=C(x, N)

implies

D) [y (Np— -1+ 11> e

(N

Clx, N)

Similarly, the inequality

{C(x, N—1) implies

BLELL =1 (Np= N= )+ 1]

< Cr - Cgm
Cmr )

(8)

From equations (7) and (8), we have

LGN 2 C—C—mcfﬂ ©)
and
L(x, N- D¢~
10)
where

Lz, N)=ZELL ¥ (Np— N-1)+1]

and D(x, p) = pxh(x)/(1—p) for N = 1,

2, - and L(x,N)=0 for N=0.
For p=1, C(x,N+1)=C(x,N)
C(x, N)<C(x,N—1)

and

imply

N£N+].2 xh(x)Z Crec— Cgm

2 mr
(11)
and
Nl\g“l wh(x) -z Com
(12)
respectively.

Combining the equations (11) and (12),
we have

L (e >SS

Cor 9
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and proof.
L'(x. N—1)¢ C,ec— Com ’ (14) Suppose that p=1. Since #h(x)> h(0)
mr for all x>0, we have
where L’(x,N)= N "\Q— 1 xh(x) for
L'(x,N)— L (x, N—1)=Nxh(x)>0.
N=1,2,- and L'(x,N)=0 for
N=0. Thus L(x,N) is strictly increasing in
N and tends to o as N—co, Hence the
Lemma 4.1. result follows.

Let Z(p,N)=pM(N+1—Np). Then

lim Z(p, N)=0 for all 0<p<1.
N—ooo

proof.
It is clear that Z(p,N)=0 for p=0.
And then the limit follows.

For Q< p<1, it is easy to see that

Z(p,N)= 1>N(N(1—p)+1)g_}1 NpN—l_I_ pN

The result immewatery follows from
the fact that

- 1405l 2
T (-9
implies lim NpV " 1=(0m
N—oo

Theorem 4.2.
sufficiently large so that
th(x) > cre—_cbm
(1_1))2 Cmr
Then there exists a finite N* which
satisfies (9), (10), (13) and (14) and it is
unique.

Suppose that x is

for 0<p<1.

Next we consider the case that 0<p<l.
Since A(x)> #(0) for all x>0, we have

L(x,N)— L(x, N—1)
=—Qf%fl[Np”“(1—p)2]>0,

where D(x, p)= pxh(x)/(1—p).
Thus L(x,N) is strictly increasing in N.
It follows from Lemma 4.1 that
. _ _bxh(x)
and the result follows. W

Remark For p=1 the system returns
to the state as good as new one. after
every PM. Hence there is no need to
replace the system by new one and no

optimal N* exists.

Next we consider the case when the
number of PM, N, is fixed. To find the
optimal period x* for a given N which
minimizes C(x,N) in (5) and (6), we take
the derivative C(x,N) with respect to x
and set it equal to 0. Then we have
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E(p, N) 21’ (%) + N(xh(x) — H(x))
_ _(N"1DCptCo

’
CWI?’

(15)
where

&p,N)=pl N(1—p)—1+p"/(1—p)*
for 0<p<1 and M]\é__l—)- for p=1..

Let g(x) denotes the left-hand side of
(15) and let C be the right-hand side of
(15). Then

—5?'; C(x, N)=g(x)— C,
where g(0)=0 and C>0.

43. If Kt) is
and convex,

Lemma strictly

increasing then g(x) is
increasing in x.
proof.

It is easy to see that
i €
= &(p, N)[2xk (x) + x°h"" (x)]+ Nk’ (x) >0

since h(t)
convex.

is strictly increasing and

Theorem 44. If h(t) is strictly
increasing and convex function, then there

exists a x*<oo which satisfies (15) for a
given integer N and it is unique.

proof.

It is shown from Lemma 4.3, that g(x)
is increasing in x.

Using Mean-value theorem, we have,
for <%

£(2) = £, N)2H () + 5 520 (1)

which becomes oo as x—woo, [t is also
noted that g(0)=0.
Thus there exists a finite and unique

x* which satisfies (15) for any giver N.

We finally consider the problem of
finding the optimal period x* and the
of PM, N°*, which
minimizes C(x,N) of the equation (5) and

(6). In this case, neither x nore N is
assumed to be fixed.

optimal number

First, we can obtain xp as a function
of N which satisfies (15).
xy for x in C(x,N) of the equations (5)

Substituting

and (6), we have the expected cost rate
per unit time as follows.

For 0<p<1,
Cx y, N)
_ &N
= [ Cod Dy DOV L2 i)
+ [ OxNh(t)dt} +(N=1)C,, + C,e]/NxN
(16)
and for p=1,
C(xNv N)
= [ Cmr{_ﬂ(%__ll x () + Nfo Nh( t)dt}
+(N—=1)Cpp+ C, .1/ Nxy
a7

, where D(xy p) = pryh(xpn)/(1— D).
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Since the formulas (16) and (17) are
function of N only, we can obtain N*

which minimizes C(xy N).

Theorem 4.5. Suppose that the hazard
rate of a life distribution F is strictly
increasing and convex function. For a
given N there exists a finite and unique

xy which satisfies the equation (15).
And, if
peyh(xy) | (1= 0)*2(C,.— Cp)| Crrr

then the value N satisfying the equation
(13) is the optimal number of PM which

minimizes the expected cost rate per unit
time C(x,N) of the equations (5) and (6).

Using the difference operator, we can

find N* in (16) and (17). The difference
operator is defined by

AC(xN,N)= C(xN+1,N+1)~C(xN,]V)1
N=1,2,- (18)

Then, it is easy to see that N is the
smallest integer N such that 4C(xy, N),
which is finding N°
minimizing (16) and (17). Once we obtain

equivalent to

N*, we can find the optimal period x*
from Theorem 4.4.

period and the
optimal number of PM which minimize
C(x,N) of the equations (5) and (6) are

Hence the optimal

x* and N*, respectively.

5. Numerical Example

Suppose that the failure time
distribution F is Weibull distribution with
a scale

parameter A and a shape

parameter B, is h(2) = A1 for B>0
and #=(. As a special case, we take B
=3 and A=1 for #=0.

For various values of p, we compute

the optimal x* and N® which minimize
C(x,N) of (5) and (6). It can be obtained
from the equations (5) and (6) and (15)
that

XN

A
= (A= LN=-DCpp+ C, 1} °
{Cl6B(N(1— p) — 1+ p")

_ 1
+2N(1- )2 °

(19)
and
C(xN,N; ; ,

=[ mr( 1ixN _ 1—_D 3)_
+ (NC— 1)Clpm£ EJ]Z]/N%cN.p e
(20)

It should be noted that when p=1I,

1
L

and
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=[c (BB ). @
+(N=-1)C,,,+ C,.J/ Nxy.

Using (19) and (20), we determine N*
so that C(xy, N) is minimized. And we

also obtain x* by substituting N* for N

in the equation (19). When p=I1, we
x* and N* by using

(21) and (22) in similar way.

obtain the optimal

Then the expected cost rate per unit
time is as follows:

For 0<p<1,
Clxy, N)
4N
= [ cm,{ D(xy, p)(N— —IF;L Ve nh(x )
+ [ OxNh( t)a’t} +(N=1)C,, + C,e]/NxN
(23)
and for p=1,
C(x*, N
=[Cm,{ N 1\27*-—1 x*3+N""x'3}

+(N*-1)C,,+ C,.]/ N°x*.
(24)

Table 1 shows values of the optimal
number of PM N* for a given x. For
Table 1, we take x=08 C,,=1.0,

Cm=1.5 and C,,=20, 25 30 and

35. It is noted that no optimal N* exists
for some small values of p. This results
are corresponding to Theorem 4.1. It is
interesting to note that as the value of

C,, increases, the number of PM's
needed to minimize the expected cost rate
increases. Table 2 represents optimal

period x* and its corresponding expected
cost rate C(x"N) for N= 1 to 19(2)
when C,..=1, Cm=1.5 and
C,.,= 3.0. Table 2 shows that the value

of x* gets smaller and the expected cost
rate increases as N increases and p
increases. Table 3 lists the values of x*
and N' by applying the equations (19)
and (20) and its
expected cost rate for various choice of p

and C,, when C,,=1 and C,,=1.5.

corresponding the

The pair ( x*, N*) represents the optimal
period and the number of PM's which
minimize the expected cost rate. For

instance, when p=04 and C,,=26, he

optimal period, x*, and the number of

PM’s, N, are 0.862 and 2, respectively
and its corresponding expected cost rate
is 4.872. As we expect from Theorem 4.5,
the optimal period, x*, decreases while
the number of PM's, N*, needed to
minimize the expected cost rate increases

as the value of C,, increases. And the

N*) dost not exits
when improvement factor, p, is less than

optimal pair (x*,

a certain value for given C,,. This
result is quiet natural since the unit does
not have to be replaced by new one if
PM restores the unit to the state like
almost new one. It is also noted that, for
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fixed C,,, the optimal PM period, x”,

becomes longer and consequently, the

optimal number, N, gets smaller as the
degree of improvement decreases.
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<Table 1> Optimal number of PM’s N* and expected cost rate Clx, N*)
with C,,,=1, C,,=1.5 and x=10.8
Cre
2.0 25 3.0 35
N |Cx, N’ N |Cx N N |C&N’ N |CxNV
0.1 - - - - - - - -
0.2 - - - - - - - -
0.3 2 3.115 - - - - -
0.4 1 3.140 2 3.524 4 3.744 - -
05 1 3.140 2 3.620 2 3.933 3 4.148
0.6 1 3.140 2 3.716 2 4.029 2 3.341
0.7 1 3.140 1 3.765 2 4.125 2 4437
0.8 1 3.140 1 3.765 2 4.220 2 4533
0.9 1 3.140 1 3.765 2 4,317 2 4629
1.0 1 3.140 1 3.765 1 4.390 2 5.015
<Table 2> Optimal period x* and expected cost rate C(x*, N)
with C,,=1, C,,=1.5 and C,=3.0
N p
0.1 0.2 0.3 0.4 05 06 0.7 08 09 1O
) X* 11447 | 1.1447 | 1.1447 | 1.1447 | 1.1447 | 1.1447 | 1.1447 | 1.1447 | 1.1447 | 1.1447
C(x*, N)| 39311 | 3.9311 | 39311 | 39311 | 3.9311 | 39311 | 3.9311 | 39311 | 3.9311 | 39311
3 X* 0.9384 | 0.8855 | 0.8395 | 0.7991 | 0.7631 | 0.7310 | 0.7020 | 06758 | 0.6519 | 0.6300
Cix*, N)| 3.1968 | 3.3877 | 35734 | 3.7544 | 39311 | 4.1039 | 4.2732 | 4.4392 | 46021 | 4.7622
_ x* 0.8941 | 0.8320 | 0.7769 | 0.7272 | 0.6820 | 0.6405 | 0.6024 | 05672 | 0.5347 | 0.5047
0 Clx*, N)| 3.0199 | 3.2451 | 34753 | 3.7128 | 3.9591 | 42154 | 4.4823 | 47602 | 5.0493 | 5.3495
7 X* 0.8748 | 0.8095 | 0.7510 | 06976 | 0.6480 | 06015 | 05577 | 05164 | 0.4774 | 0.4409
Cx*, N)| 2.9395 | 3.1767 | 3.4239 | 3.6860 | 3.9680 | 4.2747 | 4.6107 | 4.9800 | 5.3862 | 5.8321
9 X 0.8640 | 0.7970 | 0.7370 | 06818 | 06299 | 05804 | 0.5327 | 0.4867 | 0.4424 | 0.4002
C(x*, N)| 2.8936 | 3.1366 | 3.3921 | 3.6669 | 3.9690 | 4.3075 | 4.6929 | 51366 | 56506 | 6.2467
1 Xk 0.8571 | 0.7892 | 0.7282 | 06719 | 0.6187 | 0.5673 | 0.5170 | 0.4674 | 0.4186 | 0.3712
Cix*, N)| 2.8639 | 3.1103 | 3.3706 | 36530 | 3.9673 | 4.3266 | 4.7477 | 52518 | 58642 | 6.6129
3 X* 0.8522 | 0.7837 | 07222 | 06652 | 0.6111 | 05585 | 0.5063 | 0.4539 | 0.4012 | 0.3490
C(x*, N)| 2.8432 | 3.0918 | 3.3552 | 3.6424 | 3.9648 | 4.3384 | 4.7856 | 5.3386 | 6.0400 | 6.9428
5 X* 0.8487 | 0.7797 | 0.7178 | 0.6604 | 0.6057 | 05522 | 0.4987 | 04440 | 0.3879 | 0.3313
Cix*, N)| 2.8278 | 3.0780 | 3.3436 | 3.6342 | 3.9623 | 4.3460 | 4.8129 | 54056 | 6.1871 | 7.2442
7 X 0.8460 | 0.7767 | 0.7144 | 0.6567 | 0.6016 | 05475 | 0.4929 | 0.4365 | 0.3775 | 0.3167
Clx*, N)| 2.8160 | 3.0673 | 3.3346 | 36277 | 3.9600 | 4.3512 | 4.8331 | 54582 | 6.3115 | 7.5224
19 X 0.8438 | 0.7743 | 0.7118 | 06538 | 05984 | 05439 | 0.4885 | 0.4306 | 0.3690 | 0.3044
Clx*, N)| 2.8067 | 3.0588 | 33273 | 3.6224 | 3.9579 | 4.3549 | 4.8486 | 55002 | 6.4180 | 7.7815
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<Table 3> Optimal period x*, number of PM's N* and its expected cost rate
Clx, N*) with C,.=1, C,,=1.5

cre
D 2.0 2.2 2.4
| Nl o N 2 | N e, N | x| N et N
02 | 0876 | 2 4279 - - - - - -
03 | 1000 | 1 5.5 1032 | 1 5.376 - - -
04 | 1000 | 1 5.25 1032 | 1 5376 | 1063 | 1 5505
05 | 1.000 | 1 525 1032 | 1 5376 | 1063 | 1 5505
06 | 1000 | 1 525 1032 | 1 5376 | 1063 | 1 5505
0.7 | 1000 | 1 525 1032 | 1 5376 | 1063 | 1 5505
08 | 1.000 | 1 525 1032 | 1 5376 | 1063 | 1 5505
09 | 1.000 | 1 525 1032 | 1 5376 | 1063 | 1 5505
10 | 1000 | 1 525 1032 | 1 5376 | 1063 | 1 5505
Cre
D 2.6 2.8 3.0
o | N | o, N | N | e N x| N | et N
04 | 0862 | 2 4872 - - - - - -
05 | 1001 | 1 5635 | 1119 | 1 5766 | 0863 | 2 5.214
06 | 1091 | 1 5635 | 1119 | 1 | 5766 | 1145 | 1 5.897
07 | 1091 | 1 5635 | 1119 | 1 5766 | 1.145 | 1 5.807
08 | 1091 | 1 5635 | 1119 | 1 5766 | 1.145 | 1 5.897
09 | 1091 | 1 5635 | 1119 | 1 5766 | 1145 | 1 5.897
10 | 1091 | 1 5635 | L119 | 1 5766 | 1.145 | 1 5.807
C.
D 40 5.0 6.0
o | NN x| N o, N 2t | N ot N
07 | 08755 | 2 5.998 — - - - - -
08 | 1260 | 1 6548 | 0744 | 3 63% | 0624 | 5 6.487
09 | 1260 | 1 6548 | 0884 | 2 678 | 0746 | 3 7.036
10 | 1260 | 1 6548 | 1357 | 1 7184 | 0909 | 2 7.429




