• Title/Summary/Keyword: performance-robustness

Search Result 1,694, Processing Time 0.028 seconds

Multivariable Control System Design for Magnetic Bearing (자기베어링에 대한 다변수 제어계 설계)

  • Choung, K.G.;Yang, J.H.;Kim, C.H.
    • Journal of Power System Engineering
    • /
    • v.15 no.1
    • /
    • pp.78-85
    • /
    • 2011
  • In order to design the control system of the magnetic bearing for the high speed 3 phase induction motor, the mathematical modeling was conducted and LQ regulator system was designed. When the plant is controllable and detectable, the nominal stability of LQ regulator could be guaranteed. However, LQ regulator doesn't ensure the robustness of stability and performance for the real system because LQ control is the mathematical optimal theory. In this paper to ensure the robustness of stability and performance for the real system, the control systems are designed by the simulation to the variation system parameters and this method was confirmed as an effective means.

A Study on Design of the Modified Fuzzy-Compensated PID Controller (개선된 퍼지보상 PID제어기 설계에 관한 연구)

  • Lee, H.J.;Kim, J.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.4
    • /
    • pp.111-118
    • /
    • 1995
  • This paper presents the modified fuzzy-compensated PID(FCPID) control, which involves adding the compensator to an existing PID controller, to improve the performances of the systems. Compared to a conventional PID control and a fuzzy logic control(FLC), the proposed control scheme has superior performance. Experimental results of an actual implementation of the modified PC-based FCPID controller on the DC servo-motor demonstrate considerable improve- ment of the performance of the existing FCPID control by monitoring the scaling factor. They show faster responses and smaller overshoots than the conventional FCPID control scheme for the various reference inputs and the robustness to the loads.

  • PDF

A Study on the Robust Controller in Independent Modal space for Parameter Errors (파라메타 오차에 강인한 독립모달공간 제어기법에 대한 연구)

  • 황재혁;김준수;박대성;박명호
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.595-605
    • /
    • 1996
  • If the control force designed on the basis of the mathematical model with parameter errors is applied to control the actual system, the closed-loop performance of the actual system will be degraded depending on the degree of the errors, In this study, the effect of parameter errors on the robustness of several natural controls has been analyzed and compared. Every asymptoic stability condition for the natural controls has been derived using Lyapunov approach, and the characteristics of the stability conditions has also been compared. The extent of deviation of the closed-loop performance from the designed one for the natural controls is derived using operator techniques, and evaluated by numerical method. It has been found that the optimal control, acceleration feedback control, and acceleration-position feedback control among the considered natural controls would be robust one with respect to the parameter errors.

  • PDF

Real Time Control of an Induction Motor Using IMC Approach

  • Nghia, Duong Hoai;Nho, Nguyen Van;Bac, Nguyen Xuan;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.456-463
    • /
    • 2009
  • The paper presents a method for controlling induction motors using a nonlinear internal model control (IMC) approach. The process model and the inverse model are developed in the rotor flux coordinate. The main advantage of the proposed method is that it easily specifies the performance (steady state error, transient response, etc.) and the robustness of the controller by means of the IMC filters. Simulation results illustrate the effectiveness of the proposed method. Results on a real time system show that the control system has good performance and robustness against changes in motor parameters (rotor and stator resistances, rotor and stator inductances, rotor inertia).

HMnet Evaluation for Phonetic Environment Variations of Traning Data in Speech Recognition

  • Kim, Hoi-Rin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.4E
    • /
    • pp.28-36
    • /
    • 1996
  • In this paper, we propose a new evaluation methodology which can more clearly show the performance of the allophone modeling algorithm generally used in large vocabulary speech recognition. The proposed evaluation method shows the running characteristics and limitations of the modeling algorithm by testing how the variation of phonetic environments of training data affects the recognition performance and the desirable number of free parameters to be estimated. Using the method, we experiment results, we conclude that, in vocabulary-independent recognition task, the phonetic diversity of training data greatly affects the robustness of model, and it is necessary to develop a proper measure which can determine the number of states compromizing the robustness and the precision of the HMnet better than the conventional modeling efficiency.

  • PDF

Robust Observer Design for Multi-Output Systems using Eigenstructure (고유구조를 이용한 다중출력 시스템의 강인한 관측기 설계)

  • 허건수;남준철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.39-44
    • /
    • 2003
  • It was shown that the robustness of deterministic observers with respect to modeling errors, measurement bias and round-off errors can be represented by a single performance index the condition number of the observer eigenvector matrix. In this paper, a robust observer for multi-output systems is designed using the left eigenstructure assignment, where the observer gain can not be determined uniquely with respect to the desired observer poles. Utilizing the eigenstructuer assignment for the robustness of the observer, the desired eigenvector matrix is selected to achieve the observer eigenvector matrix with the small condition number. The performance of the designed robust observer is evaluated in a spindle-drive simulation example where the load speed to be estimated based on the measured signals.

  • PDF

Control of Multi-Joint Manipulator Using PD-Sliding Mode (PD-슬라이딩 모드를 이용한 다 관절 매니퓰레이터 제어)

  • Son, Hyun-Seok;Lee, Won-Ki;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1286-1293
    • /
    • 2008
  • This paper proposes a realization of robust trajectory tracking for an industrial robot by using PD-sliding mode hybrid control. The PD control has a good performance in the transient period while the sliding mode control has robustness against the system uncertainties. The proposed control method is proposed for the control of a multi-joint robot by taking advantages of both the PD and sliding mode controls. The embodiment of distributed controllers that drive 4-DOF axes has evaluated through experiments with the multi-joint robot AT1. The PD-sliding mode algorithm which is proposed in this paper shows a good performance in the transient period and robustness against disturbances and This paper shows accuracy of end-effector.

Analysis of Design Factors for High Performance Fuzzy Logic Control of Refrigeration Cycle (냉동사이클의 고성능 퍼지제어를 위한 설계 인자들의 영향 분석)

  • Choi, Sung-Woon;Jeong, Seok-Kwon;Yang, Joo-Ho
    • Journal of Power System Engineering
    • /
    • v.20 no.6
    • /
    • pp.11-19
    • /
    • 2016
  • A variable speed refrigeration system(VSRS) has been received high attention for energy saving ability. This paper investigates effects of design factors such as membership function range and sampling time to control performances for systematical designing fuzzy logic controller of the VSRS. Some comparisons of control performance between the fuzzy and PI are conducted including comparative evaluation of robustness against noise by using computer simulations. The simulation results showed that the fuzzy is very useful design method for engineers in the industrial fields which have big noises system and deal with inherent nonlinear system like the VSRS.

Stable PID Tuning for Integrating Processes using sensitive function $M_s$ (적분공정을 위한 민감도 함수 $M_s$를 이용한 안정된 PID 동조)

  • Lee, Won-Hyok;Hwang, Hyung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.119-121
    • /
    • 2007
  • PID control is windely used to control stable processes, however, its application to integrating processes is less common. In this paper, we proposed a simple PID controller tuning method for integrating processes with time delay to meet a sensitive function $M_s$. With the proposed PID tuning method, we can obtain stable integrating processes using PD controller in inner feedback loop and a loop transfer function with desired stable specification. This guarantees both robustness and performance. Simulation examples are given to show the good performance of the proposed tuning method to other methods.

  • PDF

Design of Robust Input Shaping Filter in the Z-domain (Z-영역에서 강인한 입력성형필터의 설계)

  • Park, Un-Hwan;Lee, Jae-Won;Lim, Byoung-Duk;Joo, Hae-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.155-162
    • /
    • 1999
  • Input shaping technique has been used as a simple method of controlling the residual vibration of a flexible manipulator. With the conventional methods previously proposed by several authors, the frequency range that shows a good performance is restricted. When the designed frequency being different from the natural frequency of a system, the performance of control degrades remarkably. This paper introduced a new technique that designs input shaping with robustness in the z-domain.

  • PDF