• Title/Summary/Keyword: performance standards

Search Result 2,390, Processing Time 0.029 seconds

Optimization of Analytical Methods for Ochratoxin A and Zearalenone by UHPLC in Rice Straw Silage and Winter Forage Crops (UHPLC를 이용한 볏짚 사일리지와 동계사료작물의 오크라톡신과 제랄레논 분석법 최적화)

  • Ham, Hyeonheui;Mun, Hye Yeon;Lee, Kyung Ah;Lee, Soohyung;Hong, Sung Kee;Lee, Theresa;Ryu, Jae-Gee
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.4
    • /
    • pp.333-339
    • /
    • 2016
  • The objective of this study was to optimize analytical methods for ochratoxin A (OTA) and zearalenone (ZEA) in rice straw silage and winter forage crops using ultra-high performance liquid chromatography (UHPLC). Samples free of mycotoxins were spiked with $50{\mu}g/kg$, $250{\mu}g/kg$, or $500{\mu}g/kg$ of OTA and $300{\mu}g/kg$, $1500{\mu}g/kg$, or $3000{\mu}g/kg$ of ZEA. OTA and ZEA were extracted by acetonitrile and cleaned-up using an immunoaffinity column. They were then subjected to analysis with UHPLC equipped with a fluorescence detector. The correlation coefficients of calibration curves showed high linearity ($R^2{\geq_-}0.9999$ for OTA and $R^2{\geq_-}0.9995$ for ZEA). The limit of detection and quantification were $0.1{\mu}g/kg$ and $0.3{\mu}g/kg$, respectively, for OTA and $5{\mu}g/kg$ and $16.7{\mu}g/kg$, respectively, for ZEA. The recovery and relative standard deviation (RSD) of OTA were as follows: rice straw = 84.23~95.33%, 2.59~4.77%; Italian ryegrass = 79.02~95%, 0.86~5.83%; barley = 74.93~97%, 0.85~9.19%; rye = 77.99~96.67%, 0.33~6.26%. The recovery and RSD of ZEA were: rice straw = 109.6~114.22%, 0.67~7.15%; Italian ryegrass = 98.01~109.44%, 1.65~4.81%; barley = 98~113.53%, 0.25~5.85%; rye = 90.44~108.56%, 2.5~4.66%. They both satisfied the standards of European Commission criteria (EC 401-2006) for quantitative analysis. These results showed that the optimized methods could be used for mycotoxin analysis of forages.

Simultaneous Determination of Eight Sugar Alcohols in Foodstuffs by High Performance Liquid Chromatography (HPLC를 이용한 식품 중 당알코올 8종 동시분석)

  • Lim, Ho-Soo;Park, Sung-Kwan;Kwak, In-Shin;Kim, Hyung-Il;Sung, Jun-Hyun;Choi, Jung-Yoon;Kim, So-Hee
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.1
    • /
    • pp.16-24
    • /
    • 2011
  • A method was established for the simultaneous determination of sugar alcohols, erythritol, xylitol, sorbitol, inositol, mannitol, maltitiol, lactitol and isomalt by High Performance Liquid Chromatography (HPLC). The sugar alcohols were converted into strong ultraviolet (UV)-absorbing derivatives with p-nitrobenzoyl chloride (PNBC). HPLC was performed on Imtakt Unison US-$C_18$ column, using acetonitrile: water (77:23) as a mobile phase and UV detection (260 nm). The calibration curves for all sugar alcohols tested were linear in the 10~200 mg/L range. The average recoveries of the sugar alcohols from three confectioneries spiked at 100 ppm of eight sugar alcohol standards ranged from 81.2 to 123.1% with relative standard deviations ranging fromo 0.2 to 4.9%. The limits of detection (LODs) were $0.5{\sim}8\;{\mu}g/L$ and the limits of quantification (LOQs) were $2{\sim}17\;{\mu}g/L$. Reproducibility of 8 sugar alcohols was 0.28~1.97 %RSD. The results of the analysis of confectioneries showed that 89 samples of 130 were detected and the sugar alcohols content of samples investigated varied between 0.4 and 693.7 g/kg. A method for the simultaneous determination of eight sugar alcohols will be used as basic data for control of sugar alcohols in confectioneries, and quality control in food manufacturing.

SysML-Based System Modeling for Design of BIPV Electric Power Generation (건물일체형 태양광 시스템의 전력발전부 설계를 위한 SysML기반 시스템 모델링)

  • Lee, Seung-Joon;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.578-589
    • /
    • 2018
  • Building Integrated Photovoltaic (BIPV) system is a typical integrated system that simultaneously performs both building function and solar power generation function. To maximize its potential advantage, however, the solar photovoltaic power generation function must be integrated from the early conceptual design stage, and maximum power generation must be designed. To cope with such requirements, preliminary research on BIPV design process based on architectural design model and computer simulation results for improving solar power generation performance have been published. However, the requirements of the BIPV system have not been clearly identified and systematically reflected in the subsequent design. Moreover, no model has verified the power generation design. To solve these problems, we systematically model the requirements of BIPV system and study power generation design based on the system requirements model. Through the study, we consistently use the standard system modeling language, SysML. Specifically, stakeholder requirements were first identified from stakeholders and related BIPV standards. Then, based on the domain model, the design requirements of the BIPV system were derived at the system level, and the functional and physical architectures of the target system were created based on the system requirements. Finally, the power generation performance of the BIPV system was evaluated through a simulated SysML model (Parametric diagram). If the SysML system model developed herein can be reinforced by reflecting the conditions resulting from building design, it will open an opportunity to study and optimize the power generation in the BIPV system in an integrated fashion.

Innovation Technology Development & Commercialization Promotion of R&D Performance to Domestic Renewable Energy (신재생에너지 기술혁신 개발과 R&D성과 사업화 촉진 방안)

  • Lee, Yong-Seok;Rho, Do-Hwan
    • Journal of Korea Technology Innovation Society
    • /
    • v.12 no.4
    • /
    • pp.788-818
    • /
    • 2009
  • Renewable energy refers to solar energy, biomass energy, hydrogen energy, wind power, fuel cell, coal liquefaction and vaporization, marine energy, waste energy, and liquidity fuel made out of byproduct of geothermal heat, hydrogen and coal; it excludes energy based on coal, oil, nuclear energy and natural gas. Developed countries have recognized the importance of these energies and thus have set the mid to long term plans to develop and commercialize the technology and supported them with drastic political and financial measures. Considering the growing recognition to the field, it is necessary to analysis up-to-now achievement of the government's related projects, in the standards of type of renewable energy, management of sectional goals, and its commercialization. Korean government is chiefly following suit the USA and British policies of developing and distributing renewable energy. However, unlike Japan which is in the lead role in solar rays industry, it still lacks in state-directed support, participation of enterprises and social recognition. The research regarding renewable energy has mainly examinedthe state of supply of each technology and suitability of specific region for applying the technology. The evaluation shows that the research has been focused on supply and demand of renewable as well as general energy and solution for the enhancement of supply capacity in certain area. However, in-depth study for commercialization and the increase of capacity in industry followed by development of the technology is still inadequate. 'Cost-benefit model for each energy source' is used in analysis of technology development of renewable energy and quantitative and macro economical effects of its commercialization in order to foresee following expand in related industries and increase in added value. First, Investment on the renewable energy technology development is in direct proportion both to the product and growth, but product shows slightly higher index under the same amount of R&D investment than growth. It indicates that advance in technology greatly influences the final product, the energy growth. Moreover, while R&D investment on renewable energy product as well as the government funds included in the investment have proportionate influence on the renewable energy growth, private investment in the total amount invested has reciprocal influence. This statistic shows that research and development is mainly driven by government funds rather than private investment. Finally, while R&D investment on renewable energy growth affects proportionately, government funds and private investment shows no direct relations, which indicates that the effects of research and development on renewable energy do not affect government funds or private investment. All of the results signify that although it is important to have government policy in technology development and commercialization, private investment and active participation of enterprises are the key to the success in the industry.

  • PDF

Modern Paper Quality Control

  • Olavi Komppa
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2000.06a
    • /
    • pp.16-23
    • /
    • 2000
  • The increasing functional needs of top-quality printing papers and packaging paperboards, and especially the rapid developments in electronic printing processes and various computer printers during past few years, set new targets and requirements for modern paper quality. Most of these paper grades of today have relatively high filler content, are moderately or heavily calendered , and have many coating layers for the best appearance and performance. In practice, this means that many of the traditional quality assurance methods, mostly designed to measure papers made of pure. native pulp only, can not reliably (or at all) be used to analyze or rank the quality of modern papers. Hence, introduction of new measurement techniques is necessary to assure and further develop the paper quality today and in the future. Paper formation , i.e. small scale (millimeter scale) variation of basis weight, is the most important quality parameter of paper-making due to its influence on practically all the other quality properties of paper. The ideal paper would be completely uniform so that the basis weight of each small point (area) measured would be the same. In practice, of course, this is not possible because there always exists relatively large local variations in paper. However, these small scale basis weight variations are the major reason for many other quality problems, including calender blacking uneven coating result, uneven printing result, etc. The traditionally used visual inspection or optical measurement of the paper does not give us a reliable understanding of the material variations in the paper because in modern paper making process the optical behavior of paper is strongly affected by using e.g. fillers, dye or coating colors. Futhermore, the opacity (optical density) of the paper is changed at different process stages like wet pressing and calendering. The greatest advantage of using beta transmission method to measure paper formation is that it can be very reliably calibrated to measure true basis weight variation of all kinds of paper and board, independently on sample basis weight or paper grade. This gives us the possibility to measure, compare and judge papers made of different raw materials, different color, or even to measure heavily calendered, coated or printed papers. Scientific research of paper physics has shown that the orientation of the top layer (paper surface) fibers of the sheet paly the key role in paper curling and cockling , causing the typical practical problems (paper jam) with modern fax and copy machines, electronic printing , etc. On the other hand, the fiber orientation at the surface and middle layer of the sheet controls the bending stiffness of paperboard . Therefore, a reliable measurement of paper surface fiber orientation gives us a magnificent tool to investigate and predict paper curling and coclking tendency, and provides the necessary information to finetune, the manufacturing process for optimum quality. many papers, especially heavily calendered and coated grades, do resist liquid and gas penetration very much, bing beyond the measurement range of the traditional instruments or resulting invonveniently long measuring time per sample . The increased surface hardness and use of filler minerals and mechanical pulp make a reliable, nonleaking sample contact to the measurement head a challenge of its own. Paper surface coating causes, as expected, a layer which has completely different permeability characteristics compared to the other layer of the sheet. The latest developments in sensor technologies have made it possible to reliably measure gas flow in well controlled conditions, allowing us to investigate the gas penetration of open structures, such as cigarette paper, tissue or sack paper, and in the low permeability range analyze even fully greaseproof papers, silicon papers, heavily coated papers and boards or even detect defects in barrier coatings ! Even nitrogen or helium may be used as the gas, giving us completely new possibilities to rank the products or to find correlation to critical process or converting parameters. All the modern paper machines include many on-line measuring instruments which are used to give the necessary information for automatic process control systems. hence, the reliability of this information obtained from different sensors is vital for good optimizing and process stability. If any of these on-line sensors do not operate perfectly ass planned (having even small measurement error or malfunction ), the process control will set the machine to operate away from the optimum , resulting loss of profit or eventual problems in quality or runnability. To assure optimum operation of the paper machines, a novel quality assurance policy for the on-line measurements has been developed, including control procedures utilizing traceable, accredited standards for the best reliability and performance.

Development of Deep Learning Structure to Improve Quality of Polygonal Containers (다각형 용기의 품질 향상을 위한 딥러닝 구조 개발)

  • Yoon, Suk-Moon;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.493-500
    • /
    • 2021
  • In this paper, we propose the development of deep learning structure to improve quality of polygonal containers. The deep learning structure consists of a convolution layer, a bottleneck layer, a fully connect layer, and a softmax layer. The convolution layer is a layer that obtains a feature image by performing a convolution 3x3 operation on the input image or the feature image of the previous layer with several feature filters. The bottleneck layer selects only the optimal features among the features on the feature image extracted through the convolution layer, reduces the channel to a convolution 1x1 ReLU, and performs a convolution 3x3 ReLU. The global average pooling operation performed after going through the bottleneck layer reduces the size of the feature image by selecting only the optimal features among the features of the feature image extracted through the convolution layer. The fully connect layer outputs the output data through 6 fully connect layers. The softmax layer multiplies and multiplies the value between the value of the input layer node and the target node to be calculated, and converts it into a value between 0 and 1 through an activation function. After the learning is completed, the recognition process classifies non-circular glass bottles by performing image acquisition using a camera, measuring position detection, and non-circular glass bottle classification using deep learning as in the learning process. In order to evaluate the performance of the deep learning structure to improve quality of polygonal containers, as a result of an experiment at an authorized testing institute, it was calculated to be at the same level as the world's highest level with 99% good/defective discrimination accuracy. Inspection time averaged 1.7 seconds, which was calculated within the operating time standards of production processes using non-circular machine vision systems. Therefore, the effectiveness of the performance of the deep learning structure to improve quality of polygonal containers proposed in this paper was proven.

An Optimization Study on a Low-temperature De-NOx Catalyst Coated on Metallic Monolith for Steel Plant Applications (제철소 적용을 위한 저온형 금속지지체 탈질 코팅촉매 최적화 연구)

  • Lee, Chul-Ho;Choi, Jae Hyung;Kim, Myeong Soo;Seo, Byeong Han;Kang, Cheul Hui;Lim, Dong-Ha
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.332-340
    • /
    • 2021
  • With the recent reinforcement of emission standards, it is necessary to make efforts to reduce NOx from air pollutant-emitting workplaces. The NOx reduction method mainly used in industrial facilities is selective catalytic reduction (SCR), and the most commercial SCR catalyst is the ceramic honeycomb catalyst. This study was carried out to reduce the NOx emitted from steel plants by applying De-NOx catalyst coated on metallic monolith. The De-NOx catalyst was synthesized through the optimized coating technique, and the coated catalyst was uniformly and strongly adhered onto the surface of the metallic monolith according to the air jet erosion and bending test. Due to the good thermal conductivity of metallic monolith, the De-NOx catalyst coated on metallic monolith showed good De-NOx efficiency at low temperatures (200 ~ 250 ℃). In addition, the optimal amount of catalyst coating on the metallic monolith surface was confirmed for the design of an economical catalyst. Based on these results, the De-NOx catalyst of commercial grade size was tested in a semi-pilot De-NOx performance facility under a simulated gas similar to the exhaust gas emitted from a steel plant. Even at a low temperature (200 ℃), it showed excellent performance satisfying the emission standard (less than 60 ppm). Therefore, the De-NOx catalyst coated metallic monolith has good physical and chemical properties and showed a good De-NOx efficiency even with the minimum amount of catalyst. Additionally, it was possible to compact and downsize the SCR reactor through the application of a high-density cell. Therefore, we suggest that the proposed De-NOx catalyst coated metallic monolith may be a good alternative De-NOx catalyst for industrial uses such as steel plants, thermal power plants, incineration plants ships, and construction machinery.

A comparative study of risk according to smoke control flow rate and methods in case of train fire at subway platform (지하철 승강장에서 열차 화재 시 제연풍량 및 방식에 따른 위험도 비교 연구)

  • Ryu, Ji-Oh;Lee, Hu-Yeong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.4
    • /
    • pp.327-339
    • /
    • 2022
  • The purpose of this study is to present the effective smoke control flow rate and mode for securing safety through quantitative risk assessment according to the smoke control flow rate and mode (supply or exhaust) of the platform when a train fire occurs at the subway platform. To this end, a fire outbreak scenario was created using a side platform with a central staircase as a model and fire analysis was performed for each scenario to compare and analyze fire propagation characteristics and ASET, evacuation analysis was performed to predict the number of deaths. In addition, a fire accident rate (F)/number of deaths (N) diagram (F/N diagram) was prepared for each scenario to compare and evaluate the risk according to the smoke control flow rate and mode. In the ASET analysis of harmful factors, carbon monoxide, temperature, and visible distance determined by performance-oriented design methods and standards for firefighting facilities, the effect of visible distance is the largest, In the case where the delay in entering the platform of the fire train was not taken into account, the ASET was analyzed to be about 800 seconds when the air flow rate was 4 × 833 m3/min. The estimated number of deaths varies greatly depending on the location of the vehicle of fire train, In the case of a fire occurring in a vehicle adjacent to the stairs, it is shown that the increase is up to three times that of the vehicle in the lead. In addition, when the smoke control flow rate increases, the number of fatalities decreases, and the reduction rate of the air supply method rather than the exhaust method increases. When the supply flow rate is 4 × 833 m3/min, the expected number of deaths is reduced to 13% compared to the case where ventilation is not performed. As a result of the risk assessment, it is found that the current social risk assessment criteria are satisfied when smoke control is performed, and the number of deaths is the flow rate 4 × 833 m3/min when smoke control is performed at 29.9 people in 10,000 year, It was analyzed that it decreased to 4.36 people.

Analytical Method for Determination of Laccaic Acids in Foods with HPLC-PDA and Monitoring (식품 중 락카인산 성분 분리정제를 통한 분석법 확립 및 실태조사)

  • Jae Wook Shin;Hyun Ju Lee;Eunjoo Lim;Jung Bok Kim
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.5
    • /
    • pp.390-401
    • /
    • 2023
  • Major components of lac coloring include laccaic acids A, B, C, and E. The Korean Food Additive Code regulates the use of lac coloring and prohibits its use in ten types of food products including natural food products. Since no commercial standards are available for laccaic acids A, B, C, and E, a standard for lac pigment itself was used to separate laccaic acids from the lac pigment molecule. A standard for each laccaic acid was then obtained by fractionation. To obtain pure lac pigment for use in food by High performance Liquid Chromatography Photo Diode Array (PDA), a C8 column yielded the best resolution among various tested columns and mobile phases. A qualitative analytical method using High Performance Liquid Chromatography (HPLC) Tandem Mass(LC-MS/MS) was developed. The conditions for fast and precise sample preparation begin with extraction using methanol and 0.3% ammonium phosphate, followed by concentration. The degree of precision observed for the analyses of ham, tomato juice and Red pepper paste was 0.3-13.1% (Relative Standard Deviation (RSD%)), degree of accuracy was 90.3-122.2% with r2=0.999 or above, and recovery rate was 91.6-114.9%. The limit of detection was 0.01-0.15 ㎍/mL, and the limits of quantitation ranged from 0.02 to 0.47 ㎍/mL. Lac pigment was not detected in 117 food products in the 10 food categories for which the use of lac pigment is banned. Multiple laccaic acids were detected in 105 food products in 6 food categories that are allowed to use lac color. Lac pigment concentrations range from 0.08 to 16.67 ㎍/mL.

Development of Plant BIM Library according to Object Geometry and Attribute Information Guidelines (객체 형상 및 속성정보 지침에 따른 수목 BIM 라이브러리 개발)

  • Kim, Bok-Young
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.2
    • /
    • pp.51-63
    • /
    • 2024
  • While the government policy to fully adopt BIM in the construction sector is being implemented, the construction and utilization of landscape BIM models are facing challenges due to problems such as limitations in BIM authoring tools, difficulties in modeling natural materials, and a shortage in BIM content including libraries. In particular, plants, fundamental design elements in the field of landscape architecture, must be included in BIM models, yet they are often omitted during the modeling process, or necessary information is not included, which further compromises the quality of the BIM data. This study aimed to contribute to the construction and utilization of landscape BIM models by developing a plant library that complies with BIM standards and is applicable to the landscape industry. The plant library of trees and shrubs was developed in Revit by modeling 3D shapes and collecting attribute items. The geometric information is simplified to express the unique characteristics of each plant species at LOD200, LOD300, and LOD350 levels. The attribute information includes properties on plant species identification, such as species name, specifications, and quantity estimation, as well as ecological attributes and environmental performance information, totaling 24 items. The names of the files were given so that the hierarchy of an object in the landscape field could be revealed and the object name could classify the plant itself. Its usability was examined by building a landscape BIM model of an apartment complex. The result showed that the plant library facilitated the construction process of the landscape BIM model. It was also confirmed that the library was properly operated in the basic utilization of the BIM model, such as 2D documentation, quantity takeoff, and design review. However, the library lacked ground cover, and had limitations in those variables such as the environmental performance of plants because various databases for some materials have not yet been established. Further efforts are needed to develop BIM modeling tools, techniques, and various databases for natural materials. Moreover, entities and systems responsible for creating, managing, distributing, and disseminating BIM libraries must be established.