DOI QR코드

DOI QR Code

Development of Deep Learning Structure to Improve Quality of Polygonal Containers

다각형 용기의 품질 향상을 위한 딥러닝 구조 개발

  • Yoon, Suk-Moon (Dept. Electronic Engineering, Hanbat National University) ;
  • Lee, Seung-Ho (Dept. Electronic Engineering, Hanbat National University)
  • Received : 2021.09.23
  • Accepted : 2021.09.27
  • Published : 2021.09.30

Abstract

In this paper, we propose the development of deep learning structure to improve quality of polygonal containers. The deep learning structure consists of a convolution layer, a bottleneck layer, a fully connect layer, and a softmax layer. The convolution layer is a layer that obtains a feature image by performing a convolution 3x3 operation on the input image or the feature image of the previous layer with several feature filters. The bottleneck layer selects only the optimal features among the features on the feature image extracted through the convolution layer, reduces the channel to a convolution 1x1 ReLU, and performs a convolution 3x3 ReLU. The global average pooling operation performed after going through the bottleneck layer reduces the size of the feature image by selecting only the optimal features among the features of the feature image extracted through the convolution layer. The fully connect layer outputs the output data through 6 fully connect layers. The softmax layer multiplies and multiplies the value between the value of the input layer node and the target node to be calculated, and converts it into a value between 0 and 1 through an activation function. After the learning is completed, the recognition process classifies non-circular glass bottles by performing image acquisition using a camera, measuring position detection, and non-circular glass bottle classification using deep learning as in the learning process. In order to evaluate the performance of the deep learning structure to improve quality of polygonal containers, as a result of an experiment at an authorized testing institute, it was calculated to be at the same level as the world's highest level with 99% good/defective discrimination accuracy. Inspection time averaged 1.7 seconds, which was calculated within the operating time standards of production processes using non-circular machine vision systems. Therefore, the effectiveness of the performance of the deep learning structure to improve quality of polygonal containers proposed in this paper was proven.

본 논문에서는 다각형 용기의 품질 향상을 위한 딥러닝 구조 개발을 제안한다. 딥러닝 구조는 convolution 층, bottleneck 층, fully connect 층, softmax 층 등으로 구성된다. Convolution 층은 입력 이미지 또는 이전 층의 특징 이미지를 여러 특징 필터와 convolution 3x3 연산하여 특징 이미지를 얻어 내는 층이다. Bottleneck 층은 convolution 층을 통해 추출된 특징 이미지상의 특징들 중에서 최적의 특징들만 선별하여 convolution 1x1 ReLU로 채널을 감소시키고convolution 3x3 ReLU를 실시한다. Bottleneck 층을 거친 후에 수행되는 global average pooling 연산과정은 convolution 층을 통해 추출된 특징 이미지의 특징들 중에서 최적의 특징들만 선별하여 특징 이미지의 크기를 감소시킨다. Fully connect 층은 6개의 fully connect layer를 거쳐 출력 데이터가 산출된다. Softmax 층은 입력층 노드의 값과 연산을 진행하려는 목표 노드 사이의 가중치와 곱을 하여 합하고 활성화 함수를 통해 0~1 사이의 값으로 변환한다. 학습이 완료된 후에 인식 과정에서는 학습 과정과 마찬가지로 카메라를 이용한 이미지 획득, 측정 위치 검출, 딥러닝을 활용한 비원형 유리병 분류 등을 수행하여 비원형 유리병을 분류한다. 제안된 다각형 용기의 품질 향상을 위한 딥러닝 구조의 성능을 평가하기 위하여 공인시험기관에서 실험한 결과, 양품/불량 판별 정확도 99%로 세계최고 수준과 동일한 수준으로 산출되었다. 검사 소요 시간은 평균 1.7초로 비원형 머신비전 시스템을 사용하는 생산 공정의 가동 시간 기준 내로 산출되었다. 따라서 본 본문에서 제안한 다각형 용기의 품질 향상을 위한 딥러닝 구조의 성능의 그 효용성이 입증되었다.

Keywords

References

  1. Insung Cho, Jihong Lee, Sangjin Oh, "Development of The Flexible User-Friendly Real-Time Machine Vision Inspection System," Journal of the institute of electronics engineers of Korea, Vol.45, No.3, pp.42-50, 2008.
  2. Park Jung-Kee, Jung Won, "Automated Inspection System Using Image Processing Technology for Automotive Components," journal of KCI, Vol.4, No.3, pp.71-78, 1999.
  3. Seung-Tak Ra, Seung-Ho Lee, "Deep Learning Structure Suitable for Embedded System for Flame Detection," Journal of IEEE Korea Council, Vol.23, No.1, pp.112-119, 2019. DOI: 10.7471/ikeee.2019.23.1.112
  4. Lee Jaehong, Lee Seung-hye, "Deep Learning for Structural Analysis," Journal of the Korean association for shell and spatial structures, Vol.17, No.4, pp.10-15, 2017.
  5. Hoseung Kim, Seong-soo Han, Chang-sung Jeong, "Location-Based Saliency Maps from a Fully Connected Layer using Multi-Shapes," Journal of KSII, Vol.15, No.1, pp.166-179, 2021.
  6. Kang, Hyeong-Ju, "Successive Approximated Log Operation Circuit for SoftMax in CNN," Journal of the Korea Institute of Information and Communication Engineering, Vol.25, No.2, pp. 330-333, 2017. DOI: 10.6109/jkiice.2020.25.2.330
  7. https://vimec.nl