• 제목/요약/키워드: pepper plants

검색결과 506건 처리시간 0.033초

혈청학적 방법에 의한 고추의 바이러스병 감염상 조사 (Serological Investigation of Virus Diseases of Pepper Plant (Capsicum annum L.) in Korea)

  • 라용준
    • Journal of Plant Biology
    • /
    • 제15권1호
    • /
    • pp.23-27
    • /
    • 1972
  • A total of 163 virus infected pepper plants(Capsicum annuum L.) collected from various pepper growing regions in Korea were investigated on the presence of tobacco mosaic virus (TMV), cucumber mosaic virus (CMV), potato virus X(PVX), potato virus Y(PVY) and alfalfa mosaic virus (AMV) by serological methods. Van Slogteren's microprecipitin test was applied for the testing of TMV, PVX and PVY from infected plants, and Ouchterlony agar double diffusion test was used for CMV and AMV. Results obtained are as follows: 1. TMV, CMV, PVX, PVY and AMV were found to occur on the pepper plants growing in Korea. 2. The prevalence of each of these viruses among the 163 pepper plants investigated was in the order of CMV: 93 plants(57.0%)>TMV: 91 plants (55.8%)>AMV: 58 plants (35.6%)>PVY: 40 plants (24.5%)> PVX:6 plants(3.7%). 3. Among the 163 plants investigated, 72 plants (44%) showed infection with one kind of virus and 91 plants (56%) showed mixed infection with more than two different viruses. In general, heavier damage of the plants was observed from mixed infection. 4. The results of serological identification of pepper viruses coincided with those results obtained by sap inoculation experiment conducted at the Horticultural Experiment Station along with present investigation. Thus the serological techniques applied in this experiment proved to be very reliable for the identification of TMV, CMV, PVX, PVY and AMV from pepper plants infected with these viruses.

  • PDF

고추와 옥수수 실생의 생장에 미치는 균근의 효과 (Effect of Vesicular-Arbuscular Mycorrhizae on the Growth of Bell Pepper and Corn Seedlings)

  • Mun, Hyeong-Tae;Kim, Chong-Kyun;Choe, Du-Mun
    • The Korean Journal of Ecology
    • /
    • 제13권1호
    • /
    • pp.1-8
    • /
    • 1990
  • Effects of mycorrhizal infection on the growth of bell pepper (Capsicum annuum) and corn (Zea mays) seedlings have been studied by comparing plants grown in sterilized soil/sand mixtures to plants grown in sterilized soil/sand mixtures with topping the original non-sterile field soil. The original nonsterile field soil, which were taken from the bell pepper field, contained a high level of endmycorrhizal spores. After seven weeks, the shoot height of inoculated plants was increased by 110% in bell pepper, and 90% in corn compared with the control plants. The average above-ground biomass of inoculated plant was increased by 88% in bell pepper and 71% in corn compared with the control plants. The shoot-root ratios in bell pepper and corn were 2.7 and 1.8 for the control plants, and 4.3 and 2.7 for the treatment plants, respectively. Phosphorus level in inoculated plant was higher than that of the control plant. However, nitrogen contents were similar between the control and the treatment plants. The control plants didi not form vesicular-arbuscular mycorrhizae during the experimental period.

  • PDF

Xanthomonas campestris pv. veicatoria에 감염된 고추와 토마토잎에서의 세규증식과 식물나이와의관계 (Relation of Plant Age to Bacterial Multiplication in Pepper and Tomato Leaves Inoculated with Xanthomonas campestris pv. vesicatoria)

  • 이종탁;황병국
    • 한국식물병리학회지
    • /
    • 제10권1호
    • /
    • pp.18-24
    • /
    • 1994
  • Multiplications and pathogenic reactions of different pepper and tomato strains of Xanthomonas campestris pv. vesicatoria were evaluated in the most upper leaves of pepper and tomato plants at different growth stages. Hypersensitive reactions were induced in mature pepper plants by inoculation with only the tomato strains but not with the pepper strains, suggesting the expression of age-related resistance in pepper plants. The age-related resistance also seems to be correlated with an apparent inability of the bacteria to multiply as extensively in mature as in young plants. No significant differences among the Korean and U. S. pepper cultivars tested were found in bacterial multiplication, irrespective of bacterial stain or plant growth stage. Korean tomato cultivars tested also were highly susceptible to either tomato or pepper strains during the development of tomato plants.

  • PDF

Trichoderma sp. GL02에 의한 고추 식물의 건조 스트레스 완화 효과 (Effect of Trichoderma sp. GL02 on alleviating Drought Stress in Pepper Plants)

  • 김상태;유성제;송재경;원항연;상미경
    • 한국유기농업학회지
    • /
    • 제28권3호
    • /
    • pp.417-430
    • /
    • 2020
  • 이상기후로 인한 건조 스트레스에 의해 식물의 기공전도도와 광합성의 감소로 생장과 작물생산량이 감소하는 피해가 발생하고 있다. 이러한 식물의 스트레스를 완화하는 유용 곰팡이를 선발하기 위해 국내 농경지에서 41 균주를 분리하였으며, 발아율 검사로 2종의 곰팡이를 선발하였으며, 식물검정을 통해 최종 Trichoderma sp. GL02를 선발하였다. GL02를 고추 식물체에 처리하였을 때, 대조구에 비해 기공전도도가 증가하고, MDA와 전기전도도는 감소하는 것으로 보아, GL02를 처리한 고추 식물체는 건조 스트레스가 완화되며, 건조 후 재관수하였을 때 회복도 효과적이었다. 이러한 결과는 GL02는 고추 식물체에 건조 스트레스를 완화시키는 유용한 소재로 사용될 수 있음을 시사한다. 또한, 추후 포장 실험을 통하여 Trichoderma sp. GL02의 건조 스트레스 완화 효과가 고추 생산량과 연관이 있는지 확인해 볼 예정이다.

Induction of Drought Stress Resistance by Multi-Functional PGPR Bacillus licheniformis K11 in Pepper

  • Lim, Jong-Hui;Kim, Sang-Dal
    • The Plant Pathology Journal
    • /
    • 제29권2호
    • /
    • pp.201-208
    • /
    • 2013
  • Drought stress is one of the major yield affecting factor for pepper plant. The effects of PGPRs were analyzed in relation with drought resistance. The PGPRs inoculated pepper plants tolerate the drought stress and survived as compared to non-inoculated pepper plants that died after 15 days of drought stress. Variations in protein and RNA accumulation patterns of inoculated and non-inoculated pepper plants subjected to drought conditions for 10 days were confirmed by two dimensional polyacrylamide gel electrophoresis (2D-PAGE) and differential display PCR (DD-PCR), respectively. A total of six differentially expressed stress proteins were identified in the treated pepper plants by 2D-PAGE. Among the stress proteins, specific genes of Cadhn, VA, sHSP and CaPR-10 showed more than a 1.5-fold expressed in amount in B. licheniformis K11-treated drought pepper compared to untreated drought pepper. The changes in proteins and gene expression patterns were attributed to the B. licheniformis K11. Accordingly, auxin and ACC deaminase producing PGPR B. licheniformis K11 could reduce drought stress in drought affected regions without the need for overusing agrochemicals and chemical fertilizer. These results will contribute to the development of a microbial agent for organic farming by PGPR.

Molecular Cloning of a Pepper Gene that Is Homologous to SELF-PRUNING

  • Kim, Dong Hwan;Han, Myeong Suk;Cho, Hyun Wooh;Jo, Yeong Deuk;Cho, Myeong Cheoul;Kim, Byung-Dong
    • Molecules and Cells
    • /
    • 제22권1호
    • /
    • pp.89-96
    • /
    • 2006
  • "Determinate" and "indeterminate" inflorescences in plants are controlled by a single recessive gene, for example, SELF-PRUNING (SP) in Solanum lycopersicum, TERMINAL FLOWER1 in Arabidopsis, CENTRORADIALIS in Antirrhinum, and CENTRORADIALIS-like gene in tobacco. Pepper (Capsicum annuum L.) is an indeterminate species in which shoots grow indefinitely. In this study, we cloned and characterized the pepper SP-like gene (CaSP). RT-PCR revealed that the CaSP transcript accumulates to higher levels in floral buds than in other organs. Comparison of genomic DNA and cDNA sequences from indeterminate and determinate pepper plants revealed the insertion of a single base in the first exon of CaSP in the determinate pepper plants. CaSP is annotated in linkage group 8 (chromosome 6) of the SNU2 pepper genetic map and showed similar synteny to SP in tomato. Transgenic tobacco plants overexpressing CaSP displayed late-flowering phenotypes similar to the phenotypes caused by overexpression of CaSP orthologs in other plants. Collectively, these results suggest that pepper CaSP is an ortholog of SP in tomato.

Alleviation of Salt Stress in Pepper (Capsicum annum L.) Plants by Plant Growth-Promoting Rhizobacteria

  • Hahm, Mi-Seon;Son, Jin-Soo;Hwang, Ye-Ji;Kwon, Duk-Kee;Ghim, Sa-Youl
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권10호
    • /
    • pp.1790-1797
    • /
    • 2017
  • In the present study, we demonstrate that the growth of salt-stressed pepper plants is improved by inoculation with plant growth-promoting rhizobacteria (PGPR). Three PGPR strains (Microbacterium oleivorans KNUC7074, Brevibacterium iodinum KNUC7183, and Rhizobium massiliae KNUC7586) were isolated from the rhizosphere of pepper plants growing in saline soil, and pepper plants inoculated with these PGPR strains exhibited significantly greater plant height, fresh weight, dry weight, and total chlorophyll content than non-inoculated plants. In addition, salt-stressed pepper plants that were inoculated with B. iodinum KNUC7183 and R. massiliae KNUC7586 possessed significantly different total soluble sugar and proline contents from non-inoculated controls, and the activity of several antioxidant enzymes (ascorbate peroxidase, guaiacol peroxidase, and catalase) was also elevated in PGPR-treated plants under salt stress. Overall, these results suggest that the inoculation of pepper plants with M. oleivorans KNUC7074, B. iodinum KNUC7183, and R. massiliae KNUC7586 can alleviate the harmful effects of salt stress on plant growth.

Iron Accumulation in Transgenic Red Pepper Plants Introduced Fp1 Gene Encoding the Iron Storage Protein

  • Kim, Young-Ho;Lee, Young-Ok;Nou, Ill-Sup;Shim, Ill-Yong;Toshiaki Kameya;Takashi Saito;Kang, Kwon-Kyoo
    • Plant Resources
    • /
    • 제1권1호
    • /
    • pp.6-12
    • /
    • 1998
  • The Fp1 gene, originally isolated from red pepper seedlings, encode the iron storage protein, and have a high homology with ferritin genes at DNA and amino acid level. In order to determine ferritin protein expression in vegetative tissue. Fp1 gene was constructed in plant expression vector(PIG12IHm) and introduced in red pepper(var. Bukang, Chungyang and Kalag-Kimjang 2) via Agrobacterium tumefaciensmediated transformation. After selection on MS media containing Kanamycin(Km), putatively selected transformants were confirmed by amplification of selectable marker gene(Fp1 and NPII) by polymerase chain reaction. Northern blot showed that transcripts of Fp1 gene were detected in mature leaves of the plants. In A6, A7 and A8 and A14 of transgenic plants, transcript of Fp1 gene was increased seven-fold to eight-fold than other transgenic plants. Also the proteins obtained from leaves of transgenic plants were immunologically detected by Western blot using rabbit anti-ferritin polyclonal antibody. The expression protein appeared as strong band of apparent mass of 23.5kDa. suggesting the iron accumulation in transgenic red pepper plants.

  • PDF

Regulation of Ethylene Emission in Tomato (Lycopersicon esculentum Mill.) and Red Pepper (Capsicum annuum L.) Inoculated with ACC Deaminase Producing Methylobacterium spp.

  • Yim, Woo-Jong;Woo, Sung-Man;Kim, Ki-Yoon;Sa, Tong-Min
    • 한국토양비료학회지
    • /
    • 제45권1호
    • /
    • pp.37-42
    • /
    • 2012
  • Improvement of plant growth by Methylotrophic bacteria can be influenced through alterations in growth modulating enzymes or hormones, especially by decreasing ethylene levels enzymatically by 1-aminocyclopropane-1-carboxylate (ACC) deaminase or by production of indole-3-acetic acid (IAA). In this study, the effect of seven strains of Methylobacterium on seedling ethylene emission of tomato and red pepper plants was evaluated under greenhouse condition. Ethylene emission was lowest in Methylobacterium oryzae CBMB20 inoculated tomato plants and CBMB110 inoculated red pepper plants at 47 days after sowing (DAS). However, at 58 DAS all inoculated plants showed almost similar pattern of ethylene emission. Methylobacterium inoculated tomato and red pepper plants showed significantly less ethylene emission compared to control. Our results demonstrated that Methylobacterium spp. inoculation promotes plant growth due to the reduction of ethylene emission and therefore can be potentially used in sustainable agriculture production systems.

Primary metabolic responses in the leaves and roots of bell pepper plants subjected to microelements-deficient conditions

  • Sung, Jwakyung;Lee, Yejin;Lee, Seulbi
    • 농업과학연구
    • /
    • 제48권1호
    • /
    • pp.179-189
    • /
    • 2021
  • Plants need essential mineral elements to favorably develop and to complete their life cycle. Despite the irreplaceable roles of microelements, they are often ignored due to the relative importance of macroelements with their influence on crop growth and development. We focused on the changes in primary metabolites in the leaves and roots of bell pepper plants under 6 microelements-deficient conditions: Copper (Cu), Zinc (Zn), Iron (Fe), Manganese (Mn), Boron (B) and Molybdenum (Mo). Bell pepper plants were grown in hydroponic containers, and individual elements were adjusted to 1/10-strength of Hoagland nutrient solution. A remarkable perturbation in the abundance of the primary metabolites was observed for the Fe and B and the Mn and B deficiencies in the leaves and roots, respectively. The metabolites with up-accumulation in the Fe-deficient leaves were glucose, fructose, xylose, glutamine, asparagine and serine. In contrast, the Mn deficiency also resulted in a higher accumulation of glucose, fructose, xylose, galactose, serine, glycine, β-alanine, alanine and valine in the roots. The B deficiency noticeably accumulated alanine, valine and phenylalanine in the roots while it showed a substantial decrease in glucose, fructose and xylose. These results show that the primary metabolism could be seriously disturbed due to a microelement deficiency, and the alteration may be either the specific or adaptive responses of bell pepper plants.