Molecular Cloning of a Pepper Gene that Is Homologous to SELF-PRUNING

  • Kim, Dong Hwan (Center for Plant Molecular Genetics and Breeding Research, Seoul National University) ;
  • Han, Myeong Suk (Center for Plant Molecular Genetics and Breeding Research, Seoul National University) ;
  • Cho, Hyun Wooh (Department of Plant Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Jo, Yeong Deuk (Department of Plant Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Cho, Myeong Cheoul (National Horticultural Research Institute, Rural Development Administration) ;
  • Kim, Byung-Dong (Center for Plant Molecular Genetics and Breeding Research, Seoul National University)
  • Received : 2006.04.22
  • Accepted : 2006.06.11
  • Published : 2006.08.31

Abstract

"Determinate" and "indeterminate" inflorescences in plants are controlled by a single recessive gene, for example, SELF-PRUNING (SP) in Solanum lycopersicum, TERMINAL FLOWER1 in Arabidopsis, CENTRORADIALIS in Antirrhinum, and CENTRORADIALIS-like gene in tobacco. Pepper (Capsicum annuum L.) is an indeterminate species in which shoots grow indefinitely. In this study, we cloned and characterized the pepper SP-like gene (CaSP). RT-PCR revealed that the CaSP transcript accumulates to higher levels in floral buds than in other organs. Comparison of genomic DNA and cDNA sequences from indeterminate and determinate pepper plants revealed the insertion of a single base in the first exon of CaSP in the determinate pepper plants. CaSP is annotated in linkage group 8 (chromosome 6) of the SNU2 pepper genetic map and showed similar synteny to SP in tomato. Transgenic tobacco plants overexpressing CaSP displayed late-flowering phenotypes similar to the phenotypes caused by overexpression of CaSP orthologs in other plants. Collectively, these results suggest that pepper CaSP is an ortholog of SP in tomato.

Keywords

Acknowledgement

Supported by : Korea Science and Engineering Foundation (KOSEF)

References

  1. Ahn, J. H., Miller, D., Winter, V. J., Banfield, M. J., Lee, J. H., et al. (2006) A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J. 25, 605− 614 https://doi.org/10.1038/sj.emboj.7600950
  2. Alvarez, J., Guli, C. L., Yu, X.-H., and Smyth, D. R. (1992) TERMINAL FLOWER. A gene affecting inflorescence development in Arabidopsis thaliana. Plant J. 2, 103−116 https://doi.org/10.1111/j.1365-313X.1992.00103.x
  3. Amaya, I., Ratcliffe, O. J., and Bradley, D. J. (1999) Expression of CENTRORADIALIS (CEN) and CEN-like genes in tobacco reveals a conserved mechanism controlling phase change in diverse species. Plant Cell 11, 1405−1418 https://doi.org/10.1105/tpc.11.8.1405
  4. Bowman, J. L., Alvarez, J., Weigel, D., Meyerowitz, E. M., and Smyth, D. R. (1993) Control of flower development in Arabidopsis thaliana by APETAIA1 and interacting genes. Development 119, 721−743
  5. Bradley, D., Carpenter, R., Copsey, L., Vincent, C., Rothstein, S., et al. (1996a) Control of inflorescence architecture in Antirrinum. Nature 379, 791−797
  6. Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T. J., et al. (2006) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 31, 3497−3500 https://doi.org/10.1093/nar/gkg500
  7. Chung, E. S., Seong, E. S., Kim, Y. C., Chung, E. J., Oh, S. K., et al. (2004) A method of high frequency virus-induced gene silencing in chili pepper (Capsicum annuum L. cv. Bukang). Mol. Cells 17, 377−380
  8. Felsenstein, J. (1993) PHYLIP (Phylogeny Inference Package) version 3.5c. distributed by the author. Department of Genetics, University of Washington
  9. Gustafson-Brown, C., Savidge, B., and Yanofsky, M. F. (1994) Regulation of the Arabidopsis floral homeotic gene APETALA1. Cell 14, 131−143
  10. Jensen, C. S., Salchert, K., and Nielsen, K. K. (2001) A TERMINAL FLOWER1-like gene from perennial ryegrass involved in floral transition and axillary meristem identity. Plant Physiol. 125, 1517−1528 https://doi.org/10.1104/pp.125.3.1517
  11. Kang, B. C., Nahm, S. H., Huh, J. H., Yoo, H. S., Yu, J. W., et al. (2001) An interspecific (Capsicum annuum x C. chinense) F2 linkage map in pepper using RFLP and AFLP markers. Theor. Appl. Genet. 102, 531−539
  12. Lander, E., Green, P., Abrahamson, J., Barlow, A., Daley, M., et al. (1987) MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174−181
  13. Lee, M. H. (1994) Genetic analysis of determinate plant shape, fruit bearing habit and deciduous character of hot pepper (Capsicum annuum L.). Ph.D. dissertation. Chungbuk National University
  14. Lee, J. M., Nahm, S. H., Kim, Y. M., and Kim, B. D. (2004) Characterization and molecular genetic mapping of microsatellite loci in pepper. Theor. Appl. Genet. 108, 619−627 https://doi.org/10.1007/s00122-003-1467-x
  15. Mandel, M. A., Gustafson-Brown, C., Savidge, B., and Yanofsky, M. F. (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 260, 273−277 https://doi.org/10.1038/260273a0
  16. Mimida, N., Sakamoto, W., Murata, M., and Motoyoshi, F. (1999) TERMINAL FLOWER 1-like genes in Brassica species. Plant Sci. 142, 155−162 https://doi.org/10.1016/S0168-9452(99)00020-5
  17. Nahm, S. H., Yu, J. W., Kang, B. C., and Kim, B. D. (1997) Election of parental lines of hot pepper mapping population using RFLP and AFLP analysis. J. Kor. Soc. Hort. Sci. 38, 693−697
  18. Pillitteri, L. J., Lovatt, C. J., and Walling, L. L. (2004) Isolation and characterization of a TERMINAL FLOWER homolog and its correlation with juvenility in Citrus. Plant Physiol. 135, 1540−1551 https://doi.org/10.1104/pp.103.036178
  19. Pnueli, L., Carmel-Gore, L., Hareven, D., Gutfinger, T., Alvarez, J., et al. (1998) The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development 125, 1979−1989
  20. Pnueli, L., Gutfinger, T., Hareven, D., Ben-Naim, O., Ron, N., et al. (2001) Tomato SP-interacting proteins define a conserved signaling system that regulates shoot architecture and flowering. Plant Cell 13, 2687−2702 https://doi.org/10.1105/tpc.13.12.2687
  21. Ratcliffe, O. J., Amaya, I., Vincent, C. A., Rothstein, S., Carpenter, R., et al. (1998) A common mechanism controls the life cycle and architecture of plants. Development 125, 1609− 1615
  22. Ratcliffe, O. J., Bradley, D. J., and Coen, E. S. (1999) Separation of shoot and floral identity in Arabidopsis. Development 126, 1109−1120
  23. Ronen, G., Carmel-Goren, L., Zamir, D., and Hirschberg, J. (2000) An alternative pathway to $\beta$-carotene formation in plant chromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato. Proc. Natl. Acad. Sci. USA 97, 11102−11107
  24. Shannon, S. and Meeks-Wagner, D. R. (1991) A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell 3, 877−892 https://doi.org/10.1105/tpc.3.9.877
  25. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions- specific gap penalities and weight matrix choice. Nucleic Acids Res. 22, 4673−4680 https://doi.org/10.1093/nar/22.22.4673
  26. Weigel, D., Alvarez, J., Smyth, D. R., Yanofsky, M. F., and Meyerowitz, E. M. (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69, 843−860
  27. Yeung, K., Seitz, T., Li, S., Janosch, P., McFerran, B., et al. (1999) Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature 401, 173−177 https://doi.org/10.1038/43686